Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. (73/850)

By transposon mutagenesis, we have isolated a mutant of Sinorhizobium meliloti which is totally unable to grow on fructose as sole carbon source as a consequence of its inability to transport this sugar. The cloning and sequencing analysis of the chromosomal DNA region flanking the TnphoA insertion revealed the presence of six open reading frames (ORFs) organized in two loci, frcRS and frcBCAK, transcribed divergently. The frcBCA genes encode the characteristic components of an ATP-binding cassette transporter (FrcB, a periplasmic substrate binding protein, FrcC, an integral membrane permease, and FrcA, an ATP-binding cytoplasmic protein), which is the unique high-affinity (K(m) of 6 microM) fructose uptake system in S. meliloti. The FrcK protein shows homology with some kinases, while FrcR is probably a transcriptional regulator of the repressor-ORF-kinase family. The expression of S. meliloti frcBCAK in Escherichia coli, which transports fructose only via the phosphotransferase system, resulted in the detection of a periplasmic fructose binding activity, demonstrating that FrcB is the binding protein of the Frc transporter. The analysis of substrate specificities revealed that the Frc system is also a high-affinity transporter for ribose and mannose, which are both fructose competitors for the binding to the periplasmic FrcB protein. However, the Frc mutant was still able to grow on these sugars as sole carbon source, demonstrating the presence of at least one other uptake system for mannose and ribose in S. meliloti. The expression of the frcBC genes as determined by measurements of alkaline phosphatase activity was shown to be induced by mannitol and fructose, but not by mannose, ribose, glucose, or succinate, suggesting that the Frc system is primarily targeted towards fructose. Neither Nod nor Fix phenotypes were impared in the TnphoA mutant, demonstrating that fructose uptake is not essential for nodulation and nitrogen fixation, although FrcB protein is expressed in bacteroids isolated from alfalfa nodulated by S. meliloti wild-type strains.  (+info)

The effect of pH on glucoamylase production, glycosylation and chemostat evolution of Aspergillus niger. (74/850)

The effect of ambient pH on production and glycosylation of glucoamylase (GAM) and on the generation of a morphological mutant produced by Aspergillus niger strain B1 (a transformant containing an additional 20 copies of the homologous GAM glaA gene) was studied. We have shown that a change in the pH from 4 to 5.4 during continuous cultivation of the A. niger B1 strain instigates or accelerates the spontaneous generation of a morphological mutant (LB). This mutant strain produced approx. 50% less extracellular protein and GAM during both chemostat and batch cultivation compared to another strain with parental-type morphology (PS). The intracellular levels of GAM were also lower in the LB strain. In addition, cultivation of the original parent B1 strain in a batch-pulse bioreactor at pH 5.5 resulted in a 9-fold drop in GAM production and a 5-fold drop in extracellular protein compared to that obtained at pH 4. Glycosylation analysis of the glucoamylases purified from shake-flask cultivation showed that both principal forms of GAM secreted by the LB strain possessed enhanced galactosylation (2-fold), compared to those of the PS. Four diagnostic methods (immunostaining, mild methanolysis, mild acid hydrolysis and beta-galactofuranosidase digestion) provided evidence that the majority of this galactose was of the furanoic conformation. The GAMs produced during batch-pulse cultivation at pH 5.5 similarly showed an approx. 2-fold increase in galactofuranosylation compared to pH 4. Interestingly, in both cases the increased galactofuranosylation appears primarily restricted to the O-linked glycan component. Ambient pH therefore regulates both GAM production and influences its glycosylation.  (+info)

Galactofuranoic-oligomannose N-linked glycans of alpha-galactosidase A from Aspergillus niger. (75/850)

Extracellular alpha-galactosidase A was purified from the culture filtrate of an over-producing strain of Aspergillus niger containing multiple copies of the encoding aglA gene under the control of the glucoamylase (glaA) promoter. Endoglycosidase digestion followed by SDS/PAGE, lectin and immunoblotting suggested that glycosylation accounted for approximately 25% of the molecular size of the purified protein. Monosaccharide analysis showed that this was composed of N-acetyl glucosamine, mannose and galactose. Mild acid hydrolysis, mild methanolysis, immunoblotting and exoglycosidase digestion indicated that the majority of the galactosyl component was in the furanoic conformation (beta-D-galactofuranose, Galf). At least 20 different N-linked oligosaccharides were fractionated by high-pH anion-exchange chromatography following release from the polypeptide by peptide-N-glycosidase F. The structures of these were subsequently determined by fast atom bombardment mass spectrometry to be a linear series of Hex(7-26)HexHA(c2). Indicating that oligosaccharides from GlcNA(c2)Man(7), increasing in molecular size up to GlcNA(c2)Man(24) were present. Each of these were additionally substituted with up to three beta-Galf residues. Linkage analysis confirmed the presence of mild acid labile terminal hexofuranose residues. These results show that filamentous fungi are capable of producing a heterogeneous mixture of high molecular-size N-linked glycans substituted with galactofuranoic residues, on a secreted glycoprotein.  (+info)

Ionization and collision-induced fragmentation of N-linked and related carbohydrates using divalent cations. (76/850)

Maltoheptaose and several N-linked glycans were ionized by electrospray as adducts with the divalent cations Mg2+, Ca2+, Mn2+, Co2+ and Cu2+. [M + metal]2+ ions were the major species in all cases with calcium giving the highest sensitivity. In addition, copper gave [M + Cu]+ ions. Other cations gave singly charged ions only by elimination of a protonated monosaccharide. Fragmentation of the [M + metal]2+ ions produced both singly and doubly charged ions with the relative abundance of doubly charged ions decreasing in the order Ca > Mg > Mn > Co > Cu. Singly charged ions were formed by elimination of a protonated monosaccharide residue followed, either by successive monosaccharide residue losses, or by a 2,4A cross-ring cleavage of the reducing-terminal monosaccharide. Formation of doubly charged fragments from [M + metal]2+ ions involved successive monosaccharide-residue losses either with or without O,2A or 2,4A cross-ring cleavages of the reducing-terminal monosaccharide. Abundant diagnostic doubly charged ions formed by loss of the 3-antenna from the O,2A cross-ring product were specific to [M + Ca]2+ ions. Fragmentation of [M + Cu]+ ions was similar to that of the corresponding [M + H]+ ions in that most cross-ring fragments were absent.  (+info)

Glycosphingolipid glycosyl hydrolases and glycosidases of synchronized human KB cells. (77/850)

KB cells were synchronized by a double thymidine block procedure. An investigation was made of the activities of alpha-L-fucosidase (EC 3.2.1.51), alpha-D-galactosidase (EC 3.2.1.22), beta-D-galactosidase (ec 3.2.1.23), alpha-D-glucosidase (EC 3.2.1.20), beta-D-glucosidase (EC 3.2.1.21), alpha-D-mannosidase (EC 3.2.1.24), beta-D-N-acetylgalactosaminidase (EC 3.2.1.53), and beta-D-N-acetylglucosaminidase (EC 3.2.1.52) from synchronized cultures, using appropriate artificial substrates. Ceramide glucosidase (EC 3.2.1.45) and ceramide trihexosidase levels (EC 3.2.1.47) were also investigated at various stages in the cell cycle, using appropriate glycosphingolipid substrates. Whereas each of these enzymes exhibited some activity throughout the cell cycle, peak activity (2- to 6-fold increase) occurred late in the S phase. Two molecular forms of ceramide glucosidase (optimal activity at pH 4.0 and pH 6.0) and two forms of ceramide trihexosidase (pH 4.0 and pH 7.5) were identified. Peak levels of the forms that preferred the relatively acid pH occurred earlier in the S phase of the cell cycle than those of the forms that were more active at the higher pH. The possibility that the forms with optimal activity at pH 4 are precursors of those with optimal activity at pH 6 to 7.5 is discussed. Precipitation of beta-galactosidase of synchronized KB cells with specific antibody revealed that changes in the activity of this enzyme during the cell cycle were the result of fluctuations in the amount of the enzyme.  (+info)

The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. (78/850)

The Na+-dependent transport of D-glucose was studied in brush border membrane vesicles isolated from the rabbit renal cortex. The presence of a Na+ gradient between the external incubation medium and the intravesicular medium induced a marked stimulation of D-glucose uptake. Accumulation of the sugar in the vesicles reached a maximum and then decreased, indicating efflux. The final level of uptake of the sugar in the presence of the Na+ gradient was identical with that attained in the absence of the gradient, suggesting that equilibrium was established. At the peak of the overshoot the uptake of D-glucose was more than 10-fold the equilibrium value. These results suggest that the imposition of a large extravesicular to intravesicular gradient of Na+ effects the transient movement of D-glucose into renal brush border membranes against its concentration gradient. The stimulation of D-glucose uptake into the membranes was specific for Na+. The rate of uptake was enhanced with increased concentration of Na+. Increasing Na+ in the external medium lowered the apparent Km for D-glucose. The Na+ gradient effect on D-glucose transport was dissected into a stimulatory effect when Na+ and sugar were on the same side of the membrane (cis stimulation) and an inhibitory effect when Na+ and sugar were on opposite sides of the membrane (trans inhibition). The uptake of D-glucose, at a given concentration of sugar, reflected the sum of the contributions from a Na+-dependent transport system and a Na+-independent system. The relative stimulation of D-glucose uptake by Na+ decreased as the sugar concentration increased. It is suggested, however, that at physiological concentrations of D-glucose the asymmetry of Na+ across the brush border membrane might fully account for uphill D-glucose transport. The physiological significance of the findings is enhanced additionally by observations that the Na+-dependent D-glucose transport system in the membranes in vitro possessed the sugar specificities and higg phlorizin sensitivity characteristic of more intact preparations. These results provide strong experimental evidence for the role of Na+ in transporting D-glucose across the renal proximal tubule luminal membrane.  (+info)

The Brucella suis homologue of the Agrobacterium tumefaciens chromosomal virulence operon chvE is essential for sugar utilization but not for survival in macrophages. (79/850)

Brucella strains possess an operon encoding type IV secretion machinery very similar to that coded by the Agrobacterium tumefaciens virB operon. Here we describe cloning of the Brucella suis homologue of the chvE-gguA-gguB operon of A. tumefaciens and characterize the sugar binding protein ChvE (78% identity), which in A. tumefaciens is involved in virulence gene expression. B. suis chvE is upstream of the putative sugar transporter-encoding genes gguA and gguB, also present in A. tumefaciens, but not adjacent to that of a LysR-type transcription regulator. Although results of Southern hybridization experiments suggested that the gene is present in all Brucella strains, the ChvE protein was detected only in B. suis and Brucella canis with A. tumefaciens ChvE-specific antisera, suggesting that chvE genes are differently expressed in different Brucella species. Analysis of cell growth of B. suis and of its chvE or gguA mutants in different media revealed that ChvE exhibited a sugar specificity similar to that of its A. tumefaciens homologue and that both ChvE and GguA were necessary for utilization of these sugars. Murine or human macrophage infections with B. suis chvE and gguA mutants resulted in multiplication similar to that of the wild-type strain, suggesting that virB expression was unaffected. These data indicate that the ChvE and GguA homologous proteins of B. suis are essential for the utilization of certain sugars but are not necessary for survival and replication inside macrophages.  (+info)

Differential changes in size distribution of xyloglucan in the cell walls of gravitropically responding Pisum sativum epicotyls. (80/850)

Growth-related change in the size distribution of hemicellulosic wall polymers during the gravitropic curvature response of intact pea (Pisum sativum L. cv Alaska) epicotyls was examined by gel-filtration chromatography. The gravitropic response was characterized by the appearance of curvature 20 to 30 min after horizontal placement, with 35 degrees of curvature attained by 80 min. Correlated with the onset of curvature, on the upper side of the epicotyl, there was a conspicuous transient increase in the abundance of relatively large hemicellulosic xyloglucan polymers, similar to increases previously found under conditions where diminished wall extensibility was expected. On the lower side there was a moderate, slower, and longer-term increase in abundance of small xyloglucan, similar to changes previously found in connection with auxin-stimulated growth responses. Both shifts occurred primarily in the epidermis. They appear to represent two coordinated physiological mechanisms contributing to differential growth.  (+info)