Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. (9/152)

AP-2 adaptors regulate clathrin-bud formation at the cell surface by recruiting clathrin trimers to the plasma membrane and by selecting certain membrane proteins for inclusion within the developing clathrin-coat structure. These functions are performed by discrete subunits of the adaptor heterotetramer. The carboxyl-terminal appendage of the AP-2 alpha subunit appears to regulate the translocation of several endocytic accessory proteins to the bud site. We have determined the crystal structure of the alpha appendage at 1.4-A resolution by multiwavelength anomalous diffraction phasing. It is composed of two distinct structural modules, a beta-sandwich domain and a mixed alpha-beta platform domain. Structure-based mutagenesis shows that alterations to the molecular surface of a highly conserved region on the platform domain differentially affect associations of the appendage with amphiphysin, eps15, epsin, and AP180, revealing a common protein-binding interface.  (+info)

Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. (10/152)

The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.  (+info)

Association of AP1 adaptor complexes with GLUT4 vesicles. (11/152)

Nycodenz gradients have been used to examine the in vitro effects of GTP-(gamma)-S on adaptor complex association with GLUT4 vesicles. On addition of GTP-(gamma)-S, GLUT4 fractionates as a heavier population of vesicles, which we suggest is due to a budding or coating reaction. Under these conditions there is an increase in co-sedimentation of GLUT4 with AP1, but not with AP3. Western blotting of proteins associated with isolated GLUT4 vesicles shows the presence of high levels of AP1 and some AP3 but very little AP2 adaptor complexes. Cell free, in vitro association of the AP1 complex with GLUT4 vesicles is increased approximately 4-fold by the addition of GTP-(gamma)-S and an ATP regenerating system. Following GTP-(gamma)-S treatment in vitro, ARF is also recruited to GLUT4 vesicles, and the temperature dependence of ARF recruitment closely parallels that of AP1. The recruitment of both AP1 and ARF are partially blocked by brefeldin A. These data demonstrate that the coating of GLUT4 vesicles can be studied in isolated cell-free fractions. Furthermore, at least two distinct adaptor complexes can associate with the GLUT4 vesicles and it is likely that these adaptors are involved in mediating distinct intracellular sorting events at the level of TGN and endosomes.  (+info)

A role for the clathrin assembly domain of AP180 in synaptic vesicle endocytosis. (12/152)

We have used the squid giant synapse to determine whether clathrin assembly by AP180 is important for synaptic vesicle endocytosis. The squid homolog of AP180 encodes a 751 amino acid protein with 40% sequence identity to mouse AP180. Alignment of squid AP180 with other AP180 homologs shows that amino acid identity was highest in the N-terminal inositide-binding domain of the protein and weakest in the C-terminal clathrin assembly domain. Recombinant squid AP180 was able to assemble clathrin in vitro, suggesting a conserved three-dimensional structure that mediates clathrin assembly despite the divergent primary sequence of the C-terminal domain. Microinjection of the C-terminal domains of either mouse or squid AP180 into the giant presynaptic terminal of squid enhanced synaptic transmission. Conversely, a peptide from the C-terminal domain of squid AP180 that inhibited clathrin assembly in vitro completely blocked synaptic transmission when it was injected into the giant presynaptic terminal. This inhibitory effect occurred over a time scale of minutes when the synapse was stimulated at low (0.03 Hz), physiological rates. Electron microscopic analysis revealed several structural changes consistent with the inhibition of synaptic vesicle endocytosis; peptide-injected terminals had far fewer synaptic vesicles, were depleted of coated vesicles, and had a larger plasma membrane perimeter than terminals injected with control solutions. In addition, the remaining synaptic vesicles were significantly larger in diameter. We conclude that the clathrin assembly domain of AP180 is important for synaptic vesicle recycling at physiological rates of activity and that assembly of clathrin by AP180 is necessary for maintaining a pool of releasable synaptic vesicles.  (+info)

The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP1 and AP2 and their medium chains. (13/152)

Recognition of sorting signals within the cytoplasmic tail of membrane proteins by adaptor protein complexes is a crucial step in membrane protein sorting. The three known adaptor complexes, AP1, AP2, and AP3, have all been shown to recognize tyrosine- and leucine-based sorting signals, which are the most common sorting signals within membrane protein cytoplasmic tails. Although tyrosine-based signals are recognized by the micro-chains of adaptor complexes, the subunit recognizing leucine-based sorting signals is less clear. In this report we show by surface plasmon resonance that the two leucine-based sorting signals within the cytoplasmic tail of the invariant chain bind independently from each other to AP1 and AP2 but not to AP3. We also show that both motifs can be recognized by the micro-chains of AP1 and AP2. Moreover, by using monomeric as well as trimeric invariant chain constructs, we show that adaptor binding does not require trimerization of the invariant chain.  (+info)

Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. (14/152)

Auxilin is a brain-specific DnaJ homolog that is required for Hsc70 to dissociate clathrin from bovine brain clathrin-coated vesicles. However, Hsc70 is also involved in uncoating clathrin-coated vesicles formed at the plasma membrane of non-neuronal cells suggesting that an auxilin homolog may be required for uncoating in these cells. One candidate is cyclin G-associated kinase (GAK), a 150-kDa protein expressed ubiquitously in various tissues. GAK has a C-terminal domain with high sequence similarity to auxilin; like auxilin this C-terminal domain consists of three subdomains, an N-terminal tensin-like domain, a clathrin-binding domain, and a C-terminal J-domain. Western blot analysis shows that GAK is present in rat liver, bovine testes, and bovine brain clathrin-coated vesicles. More importantly, liver clathrin-coated vesicles, which contain GAK but not auxilin, are uncoated by Hsc70, suggesting that GAK acts as an auxilin homolog in non-neuronal cells. In support of this view, the clathrin-binding domain of GAK alone induces clathrin polymerization into baskets and the combined clathrin-binding domain and J-domain of GAK supports uncoating of AP180-clathrin baskets by Hsc70 at pH 7 and induces Hsc70 binding to clathrin baskets at pH 6. Immunolocalization studies suggest that GAK is a cytosolic protein that is concentrated in the perinuclear region; it appears to be highly associated with the trans-Golgi where the budding of clathrin-coated vesicles occurs. We propose that GAK is a required cofactor for the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells.  (+info)

Molecular cloning of clathrin assembly protein gene (rCALM) and its differential expression to AP180 in rat brain. (15/152)

Binding of clathrin assembly protein to clathrin triskelia induces their assembly into clathrin-coated vesicle (CCV) in neurons. The clathrin assembly protein gene (rCALM) was cloned from rat brain cDNA library. rCALM deduced 69 kD molecule has overall 73% amino acid homology compared with that of AP180 protein. The N-terminal domain, where amino acid sequences are very similar with AP180, harbours binding sites for clathrin and inositides, as well as possible phosphorylation sites, but the proline rich C-terminal domain is different from that of AP180. The mRNA expression of rCALM and AP180 by in situ hybridization histochemistry revealed that the rCALM mRNA was more intensely expressed than that of AP180, and the distribution patterns were different from each other. These results suggest that the rCALM mediates the assembly of clathrin in neural and supporting cells of brain, and regulates the clathrin coated-vesicle formation through phosphorylation and inositide metabolism.  (+info)

Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. (16/152)

The "WD40" domain is a widespread recognition module for linking partner proteins in intracellular networks of signaling and sorting. The clathrin amino-terminal domain, which directs incorporation of cargo into coated pits, is a beta-propeller closely related in structure to WD40 modules. The crystallographically determined structures of complexes of the clathrin-terminal domain with peptides derived from two different cargo adaptors, beta-arrestin 2 and the beta-subunit of the AP-3 complex, reveal strikingly similar peptide-in-groove interactions. The two peptides in our structures contain related, five-residue motifs, which form the core of their contact with clathrin. A number of other proteins involved in endocytosis have similar "clathrin-box" motifs, and it therefore is likely that they all bind the terminal domain in the same way. We propose that a peptide-in-groove interaction is an important general mode by which beta-propellers recognize specific target proteins.  (+info)