Maximal number of hormonogenic iodotyrosine residues in thyroglobulin iodinated by thyroid peroxidase. (1/58)

Almost non-iodinated human goiter thyroglobulin has been iodinated in vitro by thyroid peroxidase to levels as high as 75 iodine atoms per mol of protein. The following results were obtained. 1. The iodine distribution obtained in vitro with human thyroglobulin strongly ressembles that obtained in vivo for rat thyroglobulin. Thus the distribution of iodine seems to depend essentially on the structure of thyroglobulin and on the reactivity of the different tyrosine residues. 2. Although the number of hormone residues increased with iodination the highest efficiency of hormone synthesis was obtained in a very narrow range of iodination: in vitro (40%) between 25 and 30 iodine atoms, and in vivo (48%) between 10 and 20 atoms. This result suggests that the tyrosines which are coupled with a high efficiency are iodinated sequentially. 3. Maximal thyroxine content was found to be lower than approximately 3 mol/mol of thyroglobulin. This result might mean that the two 12-S subunits of thyroglobulin are not identical and that one of them is able to produce 2 mol of hormone while the second only 1 mol.  (+info)

Dopamine and mushroom bodies in Drosophila: experience-dependent and -independent aspects of sexual behavior. (2/58)

Depletion of dopamine in Drosophila melanogaster adult males, accomplished through systemic introduction of the tyrosine hydroxylase inhibitor 3-iodo-tyrosine, severely impaired the ability of these flies to modify their courtship responses to immature males. Mature males, when first exposed to immature males, will perform courtship rituals; the intensity and duration of this behavior rapidly diminishes with time. Dopamine is also required for normal female sexual receptivity; dopamine-depleted females show increased latency to copulation. One kilobase of 5' upstream information from the Drosophila tyrosine hydroxylase (DTH) gene, when fused to the Escherichia coli beta-galactosidase reporter and transduced into the genome of Drosophila melanogaster, is capable of directing expression of the reporter gene in the mushroom bodies, which are believed to mediate learning acquisition and memory retention in flies. Ablation of mushroom bodies by treatment of newly hatched larva with hydroxyurea resulted in the inability of treated mature adult males to cease courtship when placed with untreated immature males. However, functional mushroom bodies were not required for the dopaminergic modulation of an innate behavior, female sexual receptivity. These data suggest that dopamine acts as a signaling molecule within the mushroom bodies to mediate a simple form of learning.  (+info)

Binding properties of a highly potent and selective iodinated aminopeptidase N inhibitor appropriate for radioautography. (3/58)

Aminopeptidase N (APN) is a zinc metallopeptidase involved in the inactivation of biologically active peptides. The knowledge of its precise distribution is crucial to investigate its physiological role. This requires the use of appropriate probes such as the recently developed highly potent and selective radiolabeled APN inhibitor 2(S)-benzyl-3-[hydroxy(1'(R)-aminoethyl)phosphinyl]propanoyl-L-3-[ (12 5)I]iodotyrosine ([(125)I]RB 129). Its binding properties were investigated using rat brain homogenates (K(d)=3.4 nM) or APN expressed in COS-7 cells (K(d)=0.9 nM). The specific binding was 95% at [K(d)], and preliminary autoradiography in intestine is promising. The decreased affinity of [(125)I]RB 129 (=10(-6) M) for the E(350)D APN mutant, supports the critical role of E(350) in the amino-exopeptidase action of APN.  (+info)

The exterior surface of the chicken erythrocyte. (4/58)

The exterior surface of mature chicken erythrocytes has been labeled with a cationic membrane impermeable reagent, rho-nitrophenyl-N,N,N-trimethy[125I]iodotyrosinate. This reagent forms stable covalent bonds with the amino groups of exposed protein and lipid companents. Two major protein components with subunit molecular weights of 100,000 and 55,000 are found on the outer surface of mature chicken erythrocytes. Both of the labeled components coincide were periodic acid-Schiff base-stained areas on sodium dodecyl sulfate polyacrylamide gel electrophoresis indicating that they may be glycoproteins.  (+info)

An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. (5/58)

Tyrosyl-tRNA synthetase (TyrRS) from Escherichia coli was engineered to preferentially recognize 3-iodo-L-tyrosine rather than L-tyrosine for the site-specific incorporation of 3-iodo-L-tyrosine into proteins in eukaryotic translation systems. The wild-type TyrRS does not recognize 3-iodo-L-tyrosine, because of the bulky iodine substitution. On the basis of the reported crystal structure of Bacillus stearothermophilus TyrRS, three residues, Y37, Q179, and Q195, in the L-tyrosine-binding site were chosen for mutagenesis. Thirty-four single amino acid replacements and 16 of their combinations were screened by in vitro biochemical assays. A combination of the Y37V and Q195C mutations changed the amino acid specificity in such a way that the variant TyrRS activates 3-iodo-L-tyrosine 10-fold more efficiently than L-tyrosine. This engineered enzyme, TyrRS(V37C195), was tested for use in the wheat germ cell-free translation system, which has recently been significantly improved, and is now as productive as conventional recombinant systems. During the translation in the wheat germ system, an E. coli suppressor tRNA(Tyr) was not aminoacylated by the wheat germ enzymes, but was aminoacylated by the E. coli TyrRS(V37C195) variant with 3-iodo-l-tyrosine. After the use of the 3-iodotyrosyl-tRNA in translation, the resultant uncharged tRNA could be aminoacylated again in the system. A mass spectrometric analysis of the produced protein revealed that more than 95% of the amino acids incorporated for an amber codon were iodotyrosine, whose concentration was only twice that of L-tyrosine in the translation. Therefore, the variant enzyme, 3-iodo-L-tyrosine, and the suppressor tRNA can serve as an additional set orthogonal to the 20 endogenous sets in eukaryotic in vitro translation systems.  (+info)

The effect of iodide administration on hog thyroid gland and the composition of thyroglobulin and 27-S iodoprotein. (6/58)

The effect of excess iodide on hog thyroid gland has been examined with regard to the change in the chemical composition of thyroglobulin and in the accumulation of 27-S iodoprotein by the in vivo treatment of hogs with iodide for various lengths of time. The iodine content of thyroglobulin was either unchanged by short term administration of excess iodide, or somewhat lowered. However, the iodine content as well as the total amount of thyroglobulin increased in the glands enlarged by prolonged treatment with iodide. The iodine highest reached 1.17% of the protein on an average. On the other hand, 27-S iodoprotein decreased and finally disappeared after the chronic treatment. Monoiodotyrosine and diiodotyrosine increased in parallel with the increase in the iodine content (0.15 to 1.17%) caused by the iodide treatment, while thyroxine increased but reached a plateau at the level of three residues per mole of thyroglobulin, and no change was observed even in the proteins with the higher iodine content than 0.75%. Proteolytic activity measured by amino acid release from the thyroid protein was depressed by the chronic treatment. On the other hand, the amount of iodocompound released by the autoproteolysis, which may reflect hormone secretion, increased, possibly because of the marked increase in the iodine content of thyroglobulin.  (+info)

Enzymic iodination of eukaryotic ribosomal subunits. Characterization and analysis by two-dimensional gel electrophoresis. (7/58)

1. Conditions are described for the enzymic iodination of ribosomal subunits from rat liver. The reaction is relatively insensitive to broad changes in the concentration of KCl, allowing subunits to be studied under conditions which minimize their dimerization. 2. Mixtures of extracted ribosomal proteins were iodinated with (125)I, the proteins separated by two-dimensional gel electrophoresis and the radioactivity in each protein was determined. Thus 19 out of 23 of the proteins of the small subunit and 25 out of 33 of the proteins of the large subunit were labelled. Iodination should therefore be a suitable method for studying the topography of the ribosomal proteins of rat liver. 3. When the intact 40S subunit (rather than the extracted mixture of proteins) was iodinated, 18 of the 19 proteins were still labelled. However five of these were labelled less strongly than before. When the intact 60S subunit was iodinated, 17 of the 25 proteins were still labelled, although six of these were labelled less strongly. 4. These results show that in rat liver most of the ribosomal proteins of both subunits are at least partially at the surface of the particles. They are also consistent with the idea that the proportion of the ribosomal proteins in the interior of the particle may be greater for the 60S subunit than for the 40S subunit.  (+info)

Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. (8/58)

A suppressor tRNA(Tyr) and mutant tyrosyl-tRNA synthetase (TyrRS) pair was developed to incorporate 3-iodo-L-tyrosine into proteins in mammalian cells. First, the Escherichia coli suppressor tRNA(Tyr) gene was mutated, at three positions in the D arm, to generate the internal promoter for expression. However, this tRNA, together with the cognate TyrRS, failed to exhibit suppressor activity in mammalian cells. Then, we found that amber suppression can occur with the heterologous pair of E.coli TyrRS and Bacillus stearothermophilus suppressor tRNA(Tyr), which naturally contains the promoter sequence. Furthermore, the efficiency of this suppression was significantly improved when the suppressor tRNA was expressed from a gene cluster, in which the tRNA gene was tandemly repeated nine times in the same direction. For incorporation of 3-iodo-L-tyrosine, its specific E.coli TyrRS variant, TyrRS(V37C195), which we recently created, was expressed in mammalian cells, together with the B.stearothermophilus suppressor tRNA(Tyr), while 3-iodo-L-tyrosine was supplied in the growth medium. 3-Iodo-L-tyrosine was thus incorporated into the proteins at amber positions, with an occupancy of >95%. Finally, we demonstrated conditional 3-iodo-L-tyrosine incorporation, regulated by inducible expression of the TyrRS(V37C195) gene from a tetracycline-regulated promoter.  (+info)