(1/1378) Kinetic selection of HPV 16 E6/E7-directed antisense nucleic acids: anti-proliferative effects on HPV 16-transformed cells.

The E6/E7-coding sequences of the human papillomavirus type 16 (HPV 16) were probed for kinetic accessibility in vitro by pools of catalytic antisense RNA. Only long-chain complementary RNA and very few antisense sequences with a 3' portion complementary to a 10 nt window within unspliced and spliced E6-coding target sequences showed fast annealing with k(ass) values of up to 10(4) M-1s-1 indicating that the majority of E6/E7 RNA sequences are unfavourable targets for antisense inhibitors and ribozymes. Fast-annealing antisense oligodeoxyribonucleotides directed against the window of 10 nt inhibited cell proliferation of HPV 16-transformed SiHa cells but not slow-annealing antisense species. Antisense RNA of several hundred nucleotides in length also showed significant anti-proliferative activity. Biological effects of antisense oligodeoxyribonucleotides were specific for the antisense sequence, could only be found in HPV-positive but not in HPV-negative cell lines, and were related to decreased levels of E7 protein and E6/E7-specific transcripts. This work suggests that HPV 16 E7/E6 sequences exhibit a low accessibility for antisense oligonucleotides. This can be overcome, however, by exploiting the relationship between fast annealing of antisense species and their increased efficacy in human cells.  (+info)

(2/1378) Oxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath).

Radical clock substrate probes were used to assess the viability of a discrete substrate radical species in the mechanism of hydrocarbon oxidation by the soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath). New substituted cyclopropane probes were used with very fast ring-opening rate constants and other desirable attributes, such as the ability to discriminate between radical and cationic intermediates. Oxidation of these substrates by a reconstituted sMMO system resulted in no rearranged products, allowing an upper limit of 150 fs to be placed on the lifetime of a putative radical species. This limit strongly suggests that there is no such substrate radical intermediate. The two enantiomers of trans-1-methyl-2-phenyl-cyclopropane were prepared, and the regioselectivity of their oxidation to the corresponding cyclopropylmethanol and cyclopropylphenol products was determined. The results are consistent with selective orientation of the two enantiomeric substrates in the hydrophobic cavity at the active site of sMMO, specific models for which were examined by molecular modeling.  (+info)

(3/1378) Stereoselectivity of Mucorales lipases toward triradylglycerols--a simple solution to a complex problem.

The lipases from Rhizopus and Rhizomucor are members of the family of Mucorales lipases. Although they display high sequence homology, their stereoselectivity toward triradylglycerols (sn-2 substituted triacylglycerols) varies. Four different triradylglycerols were investigated, which were classified into two groups: flexible substrates with rotatable O'-C1' ether or ester bonds adjacent to C2 of glycerol and rigid substrates with a rigid N'-C1' amide bond or a phenyl ring in sn-2. Although Rhizopus lipase shows opposite stereopreference for flexible and rigid substrates (hydrolysis in sn-1 and sn-3, respectively), Rhizomucor lipase hydrolyzes both groups of triradylglycerols preferably in sn-1. To explain these experimental observations, computer-aided molecular modeling was applied to study the molecular basis of stereoselectivity. A generalized model for both lipases of the Mucorales family highlights the residues mediating stereoselectivity: (1) L258, the C-terminal neighbor of the catalytic histidine, and (2) G266, which is located in a loop contacting the glycerol backbone of a bound substrate. Interactions with triradylglycerol substrates are dominated by van der Waals contacts. Stereoselectivity can be predicted by analyzing the value of a single substrate torsion angle that discriminates between sn-1 and sn-3 stereopreference for all substrates and lipases investigated here. This simple model can be easily applied in enzyme and substrate engineering to predict Mucorales lipase variants and synthetic substrates with desired stereoselectivity.  (+info)

(4/1378) Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe.

Caveolae are vesicular organelles that represent a subcompartment of the plasma membrane. Caveolins and flotillins are two families of mammalian caveolae-associated integral membrane proteins. However, it remains unknown whether flotillins interact with caveolin proteins to form a stable caveolar complex or if expression of flotillins can drive vesicle formation. Here, we examine the cell type and tissue-specific expression of the flotillin gene family. For this purpose, we generated a novel monoclonal antibody probe that recognizes only flotillin-1. A survey of cell and tissue types demonstrates that flotillins 1 and 2 have a complementary tissue distribution. At the cellular level, flotillin-2 was ubiquitously expressed, whereas flotillin-1 was most abundant in A498 kidney cells, muscle cell lines, and fibroblasts. Using three different models of cellular differentiation, we next examined the expression of flotillins 1 and 2. Taken together, our data suggest that the expression levels of flotillins 1 and 2 are independently regulated and does not strictly correlate with known expression patterns of caveolin family members. However, when caveolins and flotillins are co-expressed within the same cell, as in A498 cells, they form a stable hetero-oligomeric "caveolar complex." In support of these observations, we show that heterologous expression of murine flotillin-1 in Sf21 insect cells using baculovirus-based vectors is sufficient to drive the formation of caveolae-like vesicles. These results suggest that flotillins may participate functionally in the formation of caveolae or caveolae-like vesicles in vivo. Thus, flotillin-1 represents a new integral membrane protein marker for the slightly larger caveolae-related domains (50-200 nm) that are observed in cell types that fail to express caveolin-1. As a consequence of these findings, we propose the term "cavatellins" be used (instead of flotillins) to describe this gene family.  (+info)

(5/1378) 2'-Pyrene modified oligonucleotide provides a highly sensitive fluorescent probe of RNA.

Oligonucleotide 9mers containing 2'-O-(1-pyrenylmethyl)uridine [U(pyr)] at the center position were synthesized by using a protected U(pyr) phosphoramidite. The UV melting behaviors indicate that the pyrene-modified oligonucleotides can bind to both their complementary DNA and RNA in aqueous solution. When compared with the unmodified oligonucleotides, the pyrene-modified oligonucleotides showed higher affinity for DNA while exhibiting lower affinity for RNA. The pyrene-modified oligonucleotides in diluted solution exhibited fluorescence typical of pyrene monomer emission [lambdamax 378 (band I) and 391 nm (band III)]. When these oligomers bound to DNA, the fluorescence intensity ratio of band III/band I was increased. With this fluorescence change, a new broad emission (lambdamax 450 nm) due to exciplex between the pyrene and an adjacent nucleobase appeared. In contrast, addition of RNA to the pyrene oligonucleotides resulted in enhancement of the pyrene monomer emission with decrease in the fluorescence band ratio. The extent of the emission enhancement was found to be highly dependent on the nucleobase adjacent to the U(pyr) in the pyrene oligomers. The pyrene oligonucleotide containing dC at the 3'-site of the modification showed remarkable increase (approximately 250 times) in fluorescence (375 nm) upon binding to complementary RNA. The present findings would open the way to the design of a highly sensitive fluorescent probe of RNA.  (+info)

(6/1378) A novel labeling approach supports the five-transmembrane model of subunit a of the Escherichia coli ATP synthase.

Cysteine mutagenesis and surface labeling has been used to define more precisely the transmembrane spans of subunit a of the Escherichia coli ATP synthase. Regions of subunit a that are exposed to the periplasmic space have been identified by a new procedure, in which cells are incubated with polymyxin B nonapeptide (PMBN), an antibiotic derivative that partially permeabilizes the outer membrane of E. coli, along with a sulfhydryl reagent, 3-(N-maleimidylpropionyl) biocytin (MPB). This procedure permits reaction of sulfhydryl groups in the periplasmic space with MPB, but residues in the cytoplasm are not labeled. Using this procedure, residues 8, 27, 37, 127, 131, 230, 231, and 232 were labeled and so are thought to be exposed in the periplasm. Using inside-out membrane vesicles, residues near the end of transmembrane spans 1, 64, 67, 68, 69, and 70 and residues near the end of transmembrane spans 5, 260, 263, and 265 were labeled. Residues 62 and 257 were not labeled. None of these residues were labeled in PMBN-permeabilized cells. These results provide a more detailed view of the transmembrane spans of subunit a and also provide a simple and reliable technique for detection of periplasmic regions of inner membrane proteins in E. coli.  (+info)

(7/1378) Characterization of the substrate specificity of alpha1,3galactosyltransferase utilizing modified N-acetyllactosamine disaccharides.

alpha1,3galactosyltransferase (alpha1,3GalT) catalyzes the synthesis of a range of glycoconjugates containing the Galalpha1,3Gal epitope which is recognized by the naturally occurring human antibody, anti-Gal. This enzyme may be a useful synthetic tool to produce a range of compounds to further investigate the binding site of anti-Gal and other proteins with a Galalpha1,3Gal binding site. Thus, the enzyme has been probed with a series of type 2 disaccharide-C8(Galbeta1-4GlcNAc-C8) analogs. The enzyme tolerated acceptors with modifications at C2 and C3 of the N-acetylglucosamine residue, producing a family of compounds with a nonreducing alpha1,3 linked galactose. Compounds that did not serve as acceptors were evaluated as inhibitors. Interestingly, the type 1 disaccharide-C8, Galbeta1-3GlcNAc-C8, was a good inhibitor of the enzyme (Ki = 270 microM vs. Km = 190 microM for Galbeta1-4GlcNAc-C8). A potential photoprobe, based on a modified type 2 disaccharide (octyl 3-amino-3-deoxy-3-N-(2-diazo-3, 3, 3-trifluoropropionyl-beta-D-galactopyranosyl-(1, 4)-2-acetamindo-2-deoxy-beta-D-glycopyranoside, (DTFP-LacNAc-C8)), was evaluated as an inhibitor of alpha1,3GalT. alpha1,3GalT bound DTFP-LacNAc-C8 with an affinity (Ki = 300 microM) similar to that displayed by the enzyme for LacNAc-C8. Additional studies were done to determine the enzyme's ability to transfer a range of sugars from UDP-sugar donors. The results of these experiments demonstrated that alpha1,3GalT has a strict specificity for UDP-Gal. Finally, inactivation studies with various amino acid modifiers were done to obtain information on the importance of different types of amino acids for alpha1,3GalT activity.  (+info)

(8/1378) Novel membrane target proteins for lipoxygenase-derived mono(S)hydroxy fatty acids.

Hydroxyeicosatetraenoic acids (HETEs) and hydroxyoctadecadienoic acids (HODEs) are major bioactive lipids formed via the lipoxygenase oxygenation of arachidonic and linoleic acid, respectively. These metabolites appear to be involved in various cellular actions including cell proliferation, migration and regulation of enzyme activities such as phospholipases and kinases. In view of the diversity of biological effects of these hydroxy fatty acids, it seems likely that multiple mechanisms are involved. Previous reports showed that 15(S)-HETE inhibited the 5-lipoxygenase in rat basophilic leukemia (RBL-1) cell homogenates and established the presence of specific cellular HETE binding sites in these and other cells. The present study used 15(S)-HETE biotin hydrazide and 15(S)-HETE biotin pentyl amide as probes to identify membrane target proteins present in RBL-1 cells that specifically interact with HETEs and HODEs. Two membrane-associated proteins, with apparent molecular weights of 43 and 58 kDa, were identified that specifically interact with these probes and competition experiments indicated that 13(S)-HODE and 15(S)-HETE were the most effective competitors for the hydrazide probe, followed in decreasing effectiveness by 5(S)-HETE, arachidonic acid, 15(R)-HETE, stearic acid and 12(S)-HHT, a cyclooxygenase product. The two proteins were isolated and microsequencing analysis established their identities as actin and the alpha-subunit of mitochondrial ATP synthase, respectively. In vitro binding studies confirmed that purified actin is a potential 15-HETE binding protein. Subcellular cytosolic fractions exhibited fewer protein-probe complexes than membrane fractions. The association of HETEs and HODEs with these cytoskeletal and mitochondrial proteins, respectively, represents a new development in the potential actions of these hydroxy fatty acids.  (+info)