Kinetics and mechanism of exchange of apolipoprotein C-III molecules from very low density lipoprotein particles. (33/15257)

Transfer of apolipoprotein (apo) molecules between lipoprotein particles is an important factor in modulating the metabolism of the particles. Although the phenomenon is well established, the kinetics and molecular mechanism of passive apo exchange/transfer have not been defined in detail. In this study, the kinetic parameters governing the movement of radiolabeled apoC molecules from human very low density lipoprotein (VLDL) to high density lipoprotein (HDL3) particles were measured using a manganese phosphate precipitation assay to rapidly separate the two types of lipoprotein particles. In the case of VLDL labeled with human [14C]apoCIII1, a large fraction of the apoCIII1 transfers to HDL3 within 1 minute of mixing the two lipoproteins at either 4 degrees or 37 degrees C. As the diameter of the VLDL donor particles is decreased from 42-59 to 23-25 nm, the size of this rapidly transferring apoCIII1 pool increases from about 50% to 85%. There is also a pool of apoCIII1 existing on the donor VLDL particles that transfers more slowly. This slow transfer follows a monoexponential rate equation; for 35-40 nm donor VLDL particles the pool size is approximately 20% and the t1/2 is approximately 3 h. The flux of apoCIII molecules between VLDL and HDL3 is bidirectional and all of the apoCIII seems to be available for exchange so that equilibrium is attained. It is likely that the two kinetic pools of apoCIII are related to conformational variations of individual apo molecules on the surface of VLDL particles. The rate of slow transfer of apoCIII1 from donor VLDL (35-40 nm) to acceptor HDL3 is unaffected by an increase in the acceptor to donor ratio, indicating that the transfer is not dependent on collisions between donor and acceptor particles. Consistent with this, apoCIII1 molecules can transfer from donor VLDL to acceptor HDL3 particles across a 50 kDa molecular mass cutoff semipermeable membrane separating the lipoprotein particles. These results indicate that apoC molecules transfer between VLDL and HDL3 particles by an aqueous diffusion mechanism.  (+info)

The protein disulphide-isomerase family: unravelling a string of folds. (34/15257)

The mammalian protein disulphide-isomerase (PDI) family encompasses several highly divergent proteins that are involved in the processing and maturation of secretory proteins in the endoplasmic reticulum. These proteins are characterized by the presence of one or more domains of roughly 95-110 amino acids related to the cytoplasmic protein thioredoxin. All but the PDI-D subfamily are composed entirely of repeats of such domains, with at least one domain containing and one domain lacking a redox-active -Cys-Xaa-Xaa-Cys- tetrapeptide. In addition to their known roles as redox catalysts and isomerases, the last few years have revealed additional functions of the PDI proteins, including peptide binding, cell adhesion and perhaps chaperone activities. Attention is now turning to the non-redox-active domains of the PDIs, which may play an important role in all of the known activities of these proteins. Thus the presence of both redox-active and -inactive domains within these proteins portends a complexity of functions differentially accommodated by the various family members.  (+info)

Simplifications of the derivations and forms of steady-state equations for non-equilibrium random substrate-modifier and allosteric enzyme mechanisms. (35/15257)

The steady-state equations for "random" enzymic mechanisms (ones with alternative routes for substrate and enzyme to form enzyme-substrate complexes) are non-Michaelian and very complicated when a quasi-equilibrium approximation cannot be used. General methods for simplifying their forms and derivations are given and applied to several single-substrate mechanisms of general or topical interest. The special simplifications resulting from partial ordering of reaction mechanism, from gross inequalities of rate constants, and from special relationships between catalytic and dissociation rate constants, are considered with reference to allosteric mechanisms. Some equations mentioned, but not given here, and more detailed working out of some of those given, have been deposited as Supplementary Publication SUP 50069 (18 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms given in Biochem. J. (1976) 153, 5.  (+info)

PredAcc: prediction of solvent accessibility. (36/15257)

PredAcc is a tool for predicting the solvent accessibility of protein residues from the sequence at different relative accessibility levels (0-55%). The prediction rate varies between 70. 7% (for 25% relative accessibility) and 85.7% (for 0% relative accessibility). Amino acids are predicted in four categories: almost certainly hidden and almost certainly exposed with a given a posteriori prediction error, probably hidden and probably exposed otherwise. AVAILABILITY: http://condor.urbb.jussieu.fr/PredAccCfg.html CONTACT: [email protected]  (+info)

Predicting protein decomposition: the case of aspartic-acid racemization kinetics. (37/15257)

The increase in proportion of the non-biological (D-) isomer of aspartic acid (Asp) relative to the L-isomer has been widely used in archaeology and geochemistry as a tool for dating. the method has proved controversial, particularly when used for bones. The non-linear kinetics of Asp racemization have prompted a number of suggestions as to the underlying mechanism(s) and have led to the use of mathematical transformations which linearize the increase in D-Asp with respect to time. Using one example, a suggestion that the initial rapid phase of Asp racemization is due to a contribution from asparagine (Asn), we demonstrate how a simple model of the degradation and racemization of Asn can be used to predict the observed kinetics. A more complex model of peptide bound Asx (Asn + Asp) racemization, which occurs via the formation of a cyclic succinimide (Asu), can be used to correctly predict Asx racemization kinetics in proteins at high temperatures (95-140 degrees C). The model fails to predict racemization kinetics in dentine collagen at 37 degrees C. The reason for this is that Asu formation is highly conformation dependent and is predicted to occur extremely slowly in triple helical collagen. As conformation strongly influences the rate of Asu formation and hence Asx racemization, the use of extrapolation from high temperatures to estimate racemization kinetics of Asx in proteins below their denaturation temperature is called into question. In the case of archaeological bone, we argue that the D:L ratio of Asx reflects the proportion of non-helical to helical collagen, overlain by the effects of leaching of more soluble (and conformationally unconstrained) peptides. Thus, racemization kinetics in bone are potentially unpredictable, and the proposed use of Asx racemization to estimate the extent of DNA depurination in archaeological bones is challenged.  (+info)

Preservation of key biomolecules in the fossil record: current knowledge and future challenges. (38/15257)

We have developed a model based on the analyses of modern and Pleistocene eggshells and mammalian bones which can be used to understand the preservation of amino acids and other important biomolecules such as DNA in fossil specimens. The model is based on the following series of diagenetic reactions and processes involving amino acids: the hydrolysis of proteins and the subsequent loss of hydrolysis products from the fossil matrix with increasing geologic age; the racemization of amino acids which produces totally racemized amino acids in 10(5)-10(6) years in most environments on the Earth; the introduction of contaminants into the fossil that lowers the enantiomeric (D:L) ratios produced via racemization; and the condensation reactions between amino acids, as well as other compounds with primary amino groups, and sugars which yield humic acid-like polymers. This model was used to evaluate whether useful amino acid and DNA sequence information is preserved in a variety of human, amber-entombed insect and dinosaur specimens. Most skeletal remains of evolutionary interest with respect to the origin of modern humans are unlikely to preserve useful biomolecular information although those from high latitude sites may be an exception. Amber-entombed insects contain well-preserved unracemized amino acids, apparently because of the anhydrous nature of the amber matrix, and thus may contain DNA fragments which have retained meaningful genetic information. Dinosaur specimens contain mainly exogenous amino acids, although traces of endogenous amino acids may be present in some cases. Future ancient biomolecule research which takes advantage of new methologies involving, for example, humic acid cleaving reagents and microchip-based DNA-protein detection and sequencing, along with investigations of very slow biomolecule diagenetic reactions such as the racemization of isoleucine at the beta-carbon, will lead to further enhancements of our understanding of biomolecule preservation in the fossil record.  (+info)

The flavin environment in old yellow enzyme. An evaluation of insights from spectroscopic and artificial flavin studies. (39/15257)

Spectroscopic and chemical modification studies of modified flavins bound to old yellow enzyme have led to predictions about the flavin environment of this enzyme. These studies analyzed solvent accessibility and hydrogen bonding patterns of particular flavin atoms, in addition to suggesting amino acid residues that are in close proximity to those atoms. Here, these studies are evaluated in the light of the crystal structure of old yellow enzyme to reveal that the spectroscopic and modified flavin results are generally consistent with the crystal structure. This highlights the fact that these are useful methods for studying flavin binding site structure. Although several of the inferred properties of the flavin environment are not consistent with the crystal structure, these discrepancies occurred in cases where an incorrect choice was made from among multiple plausible explanations for an experimental result. We conclude that modified flavin studies are powerful probes of flavin environment; however, it is risky to specify details of interactions, especially because of uncertainties due to induced charge delocalization in the flavin.  (+info)

Induction of the soxRS regulon of Escherichia coli by superoxide. (40/15257)

The soxRS regulon orchestrates a multifaceted defense against oxidative stress, by inducing the transcription of approximately 15 genes. The induction of this regulon by redox agents, known to mediate O-2 production, led to the view that O-2 is one signal to which it responds. However, redox cycling agents deplete cellular reductants while producing O-2, and one may question whether the regulon responds to the depletion of some cytoplasmic reductant or to O-2, or both. We demonstrate that raising [O-2] by mutational deletion of superoxide dismutases and/or by addition of paraquat, both under aerobic conditions, causes induction of a member of the soxRS regulon and that a mutational defect in soxRS eliminates that induction. This establishes that O-2, directly or indirectly, can cause induction of this defensive regulon.  (+info)