Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. (65/11754)

Spinal bulbar muscular atrophy is a neurodegenerative disorder caused by a polyglutamine expansion in the androgen receptor (AR). We show in transiently transfected HeLa cells that an AR containing 48 glutamines (ARQ48) accumulates in a hormone-dependent manner in both cytoplasmic and nuclear aggregates. Electron microscopy reveals both types of aggregates to have a similar ultrastructure. ARQ48 aggregates sequester mitochondria and steroid receptor coactivator 1 and stain positively for NEDD8, Hsp70, Hsp90 and HDJ-2/HSDJ. Co-expression of HDJ-2/HSDJ significantly represses aggregate formation. ARQ48 aggregates also label with antibodies recognizing the PA700 proteasome caps but not 20S core particles. These results suggest that ARQ48 accumulates due to protein misfolding and a breakdown in proteolytic processing. Furthermore, the homeostatic disturbances associated with aggregate formation may affect normal cell function.  (+info)

Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. (66/11754)

A linear mammalian artificial chromosome (MAC) will require at least three types of functional element: a centromere, two telomeres and origins of replication. As yet, our understanding of these elements, as well as many other aspects of structure and organization which may be critical for a fully functional mammalian chromosome, remains poor. As a way of defining these various requirements, minichromosome reagents are being developed and analysed. Approaches for minichromosome generation fall into two broad categories: de novo assembly from candidate DNA sequences, or the fragmentation of an existing chromosome to reduce it to a minimal size. Here we describe the generation of a human minichromosome using the latter, top-down, approach. A human X chromosome, present in a DT40-human microcell hybrid, has been manipulated using homologous recombination and the targeted seeding of a de novo telomere. This strategy has generated a linear approximately 2.4 Mb human X centromere-based minichromosome capped by two artificially seeded telomeres: one immediately flanking the centromeric alpha-satellite DNA and the other targeted to the zinc finger gene ZXDA in Xp11.21. The chromosome retains an alpha-satellite domain of approximately 1. 8 Mb, a small array of gamma-satellite repeat ( approximately 40 kb) and approximately 400 kb of Xp proximal DNA sequence. The mitotic stability of this minichromosome has been examined, both in DT40 and following transfer into hamster and human cell lines. In all three backgrounds, the minichromosome is retained efficiently, but in the human and hamster microcell hybrids its copy number is poorly regulated. This approach of engineering well-defined chromosome reagents will allow key questions in MAC development (such as whether a lower size limit exists) to be addressed. In addition, the 2.4 Mb minichromosome described here has potential to be developed as a vector for gene delivery.  (+info)

Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. (67/11754)

We describe a genetic mosaic system in Drosophila, in which a dominant repressor of a cell marker is placed in trans to a mutant gene of interest. Mitotic recombination events between homologous chromosomes generate homozygous mutant cells, which are exclusively labeled due to loss of the repressor. Using this system, we are able to visualize axonal projections and dendritic elaboration in large neuroblast clones and single neuron clones with a membrane-targeted GFP marker. This new method allows for the study of gene functions in neuroblast proliferation, axon guidance, and dendritic elaboration in the complex central nervous system. As an example, we show that the short stop gene is required in mushroom body neurons for the extension and guidance of their axons.  (+info)

Mitotic control in the absence of cdc25 mitotic inducer in fission yeast. (68/11754)

Fission yeast cells tolerate the total absence of the cdc25 mitotic inducer in two cases, either in cdc2-3w or in wee1 genetic backgrounds. In the cdc2-3w cdc25Delta double mutant, the rate-limiting step leading to mitosis is reaching a critical size. However, the size control of this mutant operates in late G2, which is different from wild-type (WT) cells. This fact suggests that in WT the rate-limiting molecular process during the G2 timer is the Tyr15 dephosphorylation of cdc2, for which the cdc25 phosphatase (together with its back-up, pyp3) is dependent. In the wee1-50 cdc25Delta mutant, the population splits into different clusters, all lacking mitotic size control. This strain maintains size homeostasis by a novel method, which is random movement of the cells from one cluster to another in the successive generations. These cells should normally have a 'minimal cycle', a 'timer' with short G1 and G2 phases. However, very often the cells abort mitosis, possibly at an early event and return back to early G2, thus lengthening their cycles. The inability of these cells to start anaphase might be caused by the absence of the main mitotic regulators (wee1 and cdc25) and the improper regulation of their back-up copies (mik1 and pyp3, respectively).  (+info)

A role for the yeast SWI/SNF complex in DNA replication. (69/11754)

The yeast SWI/SNF complex is required for expression of many genes and for the full functioning of several transcriptional activators. Genetic and biochemical studies indicate that SWI/SNF uses the energy of ATP hydrolysis to antagonize chromatin-mediated transcriptional repression. We have tested the possibility that SWI/SNF might also play a role in DNA replication. A mitotic minichromosome stability assay was used to investigate the replication efficiency of a variety of autonomous replication sequences (ARSs) in the presence and absence of SWI/SNF. The stability of minichromosomes that contain ARS1, ARS309 or ARS307 is not altered by lack of SWI/SNF, whereas the functioning of ARS121 is crippled when SWI/SNF is inactivated. The SWI/SNF dependence of ARS121 does not require the replication enhancer factor, ABF1, and thus, it appears to be a property of a minimal ARS121 origin. Likewise, a minimal derivative of ARS1 that lacks the ABF1 replication enhancer acquires SWI/SNF dependence. Replacing the ABF1 binding site at ARS1 with a binding site for the LexA-GAL4 chimeric activator also creates a SWI/SNF-dependent ARS. Our studies suggest that the SWI/SNF chromatin remodeling complex can play a role in both replication and transcription and, furthermore, that SWI/SNF dependence of ARS elements is a property of both an ARS-specific replication enhancer and the overall organization of ARS sequence elements.  (+info)

Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. (70/11754)

Germline mutations of the Brca1 tumor suppressor gene predispose women to breast and ovarian cancers. To study mechanisms underlying BRCA1-related tumorigenesis, we derived mouse embryonic fibroblast cells carrying a targeted deletion of exon 11 of the Brca1 gene. We show that the mutant cells maintain an intact G1-S cell cycle checkpoint and proliferate poorly. However, a defective G2-M checkpoint in these cells is accompanied by extensive chromosomal abnormalities. Mutant fibroblasts contain multiple, functional centrosomes, which lead to unequal chromosome segregation, abnormal nuclear division, and aneuploidy. These data uncover an essential role of BRCA1 in maintaining genetic stability through the regulation of centrosome duplication and the G2-M checkpoint and provide a molecular basis for the role of BRCA1 in tumorigenesis.  (+info)

Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. (71/11754)

Phosphorylation of histone H3 at serine 10 occurs during mitosis in diverse eukaryotes and correlates closely with mitotic and meiotic chromosome condensation. To better understand the function of H3 phosphorylation in vivo, we created strains of Tetrahymena in which a mutant H3 gene (S10A) was the only gene encoding the major H3 protein. Although both micronuclei and macronuclei contain H3 in typical nucleosomal structures, defects in nuclear divisions were restricted to mitotically dividing micronuclei; macronuclei, which are amitotic, showed no defects. Strains lacking phosphorylated H3 showed abnormal chromosome segregation, resulting in extensive chromosome loss during mitosis. During meiosis, micronuclei underwent abnormal chromosome condensation and failed to faithfully transmit chromosomes. These results demonstrate that H3 serine 10 phosphorylation is causally linked to chromosome condensation and segregation in vivo and is required for proper chromosome dynamics.  (+info)

Irradiation induces G2/M cell cycle arrest and apoptosis in p53-deficient lymphoblastic leukemia cells without affecting Bcl-2 and Bax expression. (72/11754)

The tumor suppressor p53 has been implicated in gamma irradiation-induced apoptosis. To investigate possible consequences of wild-type p53 loss in leukemia, we studied the effect of a single dose of gamma irradiation upon p53-deficient human T-ALL (acute lymphoblastic leukemia) CCRF - CEM cells. Exposure to 3 - 96 Gy caused p53-independent cell death in a dose and time-dependent fashion. By electron microscopic and other criteria, this cell death was classified as apoptosis. At low to intermediate levels of irradiation, apoptosis was preceded by accumulation of cells in the G2/M phase of the cell division cycle. Expression of Bcl-2 and Bax were not detectably altered after irradiation. Expression of the temperature sensitive mouse p53 V135 mutant induced apoptosis on its own but only slightly increased the sensitivity of CCRF - CEM cells to gamma irradiation. Thus, in these, and perhaps other leukemia cells, a p53- and Bcl-2/Bax-independent mechanism is operative that efficiently senses irradiation effects and translates this signal into arrest in the G2/M phase of the cell cycle and subsequent apoptosis.  (+info)