Peripheral benzodiazepine binding sites in platelets of patients affected by mitochondrial diseases and large scale mitochondrial DNA rearrangements. (41/884)

BACKGROUND: The peripheral-type benzodiazepine receptors (PBR) are localized on the outer mitochondrial membrane, as a constituent of mitochondrial permeability transition (MPT)-pore. Among its hypothesized functions, the regulation of the mitochondrial respiratory chain and apoptosis have been suggested; in addition alterations of PBR site density have been shown in some neuropathologic conditions with putative mitochondrial involvement. The aim of this work has been to evaluate PBR kinetic binding parameters in platelets from patients affected by mitochondrial disorders (MD) with large-scale mitochondrial DNA deletions and reduced cytochrome c oxidase activity. MATERIALS AND METHODS: Using the specific PBR radioligand [(3) H] PK 11195, the kinetic binding parameters of PBR sites were determined in platelet membrane of 15 healthy subjects and 11 patients affected by different form of MD. RESULTS: Significant changes of dissociation constant (K(d)) and maximal number of binding sites (B(max)) values were evidenced in platelets of patients versus controls. In all patients the B(max) values were decreased (2,387.0 +/- 305.6 fmol/ mg proteins versus 4889.0 +/- 357.8 fmol/mg proteins, p< 0.05), whereas the K(d) values were higher in patients than controls (13.18 +/- 2.06 nM versus 5.63 +/- 0.46 nM, p< 0.05). CONCLUSIONS: These data suggest that the kinetic binding parameters of PBR are altered in MD and that the observed changes might be related to the mitochondrial dysfunction associated with MD.  (+info)

Decreased CCA-addition in human mitochondrial tRNAs bearing a pathogenic A4317G or A10044G mutation. (42/884)

Pathogenic point mutations in mitochondrial tRNA genes are known to cause a variety of human mitochondrial diseases. Reports have associated an A4317G mutation in the mitochondrial tRNA(Ile) gene with fatal infantile cardiomyopathy and an A10044G mutation in the mitochondrial tRNA(Gly) gene with sudden infant death syndrome. Here we demonstrate that both mutations inhibit in vitro CCA-addition to the respective tRNA by the human mitochondrial CCA-adding enzyme. Structures of these two mutant tRNAs were examined by nuclease probing. In the case of the A4317G tRNA(Ile) mutant, structural rearrangement of the T-arm region, conferring an aberrantly stable T-arm structure and an increased T(m) value, was clearly observed. In the case of the A10044G tRNA(Gly) mutant, high nuclease sensitivity in both the T- and D-loops suggested a weakened interaction between the loops. These are the first reported instances of inefficient CCA-addition being one of the apparent molecular pathogeneses caused by pathogenic point mutations in human mitochondrial tRNA genes.  (+info)

Bone disorders, hypertension, and mitochondrial toxicity in HIV disease. (43/884)

Osteonecrosis, osteopenia and osteoporosis, hypertension, and mitochondrial toxicity are among the medical conditions observed in patients with HIV disease. In some cases, these disorders have been associated with antiretroviral therapy or particular antiretroviral agents. In other cases, their etiology remains unclear. Meg D. Newman, MD, discussed data from studies of these conditions and current management approaches at the Clinical Pathway of the Ryan White CARE Act 2002 All Grantee Conference held in Washington, DC, in August 2002.  (+info)

Mitochondrial dysfunction in the elderly: possible role in insulin resistance. (44/884)

Insulin resistance is a major factor in the pathogenesis of type 2 diabetes in the elderly. To investigate how insulin resistance arises, we studied healthy, lean, elderly and young participants matched for lean body mass and fat mass. Elderly study participants were markedly insulin-resistant as compared with young controls, and this resistance was attributable to reduced insulin-stimulated muscle glucose metabolism. These changes were associated with increased fat accumulation in muscle and liver tissue assessed by 1H nuclear magnetic resonance (NMR) spectroscopy, and with a approximately 40% reduction in mitochondrial oxidative and phosphorylation activity, as assessed by in vivo 13C/31P NMR spectroscopy. These data support the hypothesis that an age-associated decline in mitochondrial function contributes to insulin resistance in the elderly.  (+info)

Stem cells and cardiac disorders: an appraisal. (45/884)

The use of stem cells has proved to be an important tool in investigating the events of early cardiac development, differentiation, and morphogenesis. In addition, stem cell transplantation in the treatment of certain cardiac disorders has shown early promise. We have attempted to present a balanced review of both basic studies and clinical-therapeutic potential of stem cells transplantation in the damaged heart.  (+info)

Minimum birth prevalence of mitochondrial respiratory chain disorders in children. (46/884)

Mitochondrial respiratory chain disorders comprise a group of perhaps several hundred different genetic diseases. Each individual disorder is rare, but collectively they account for substantial use of health care resources. However, few accurate data on prevalence are available due to problems such as variation in clinical presentation, age of onset, referral practices and limitations of diagnostic methodologies. With this retrospective study, we aimed to determine the minimum birth prevalence of respiratory chain disorders that have onset in childhood, that is the proportion of births that will have onset of symptoms caused by a respiratory chain defect by 16 years of age. Of the 1 706 694 children born in the three south-eastern states of Australia (New South Wales, Victoria and South Australia) between January 1st 1987 and December 31st 1996, samples from 430 were referred for investigation of a respiratory chain disorder. Definite diagnosis of a respiratory chain disorder was made in 86 cases based on defined clinical, pathological, enzyme and molecular criteria. Age at presentation ranged from 0 to 129 months (median 4 months). The total data set predicts a minimum birth prevalence for respiratory chain disorders in children of 5.0/100 000 [95% confidence interval (CI) 4.0-6.2]. A significantly higher figure of 58.6/100 000 (95% CI 34.7-92.6) was noted for Australian families of Lebanese origin. Clinical awareness of respiratory chain disorders and investigation methods have improved since 1987, but not all affected children would have been recognized as such from the more recent years. The minimum birth prevalence of 6.2/100 000 (95% CI 4.5-8.4) for the 43 patients born between 1991 and 1994 is thought to be a more accurate estimate for respiratory chain disorders presenting in childhood. Combining our data with a previous study on prevalence of adult-onset respiratory chain disorders predicts a minimum birth prevalence of 13.1/100 000 or 1/7634 for respiratory chain disorders with onset at any age.  (+info)

DNA polymerase gamma in mitochondrial DNA replication and repair. (47/884)

Mutations in mitochondrial DNA (mtDNA) are associated with aging, and they can cause tissue degeneration and neuromuscular pathologies known as mitochondrial diseases. Because DNA polymerase gamma (pol gamma) is the enzyme responsible for replication and repair of mitochondrial DNA, the burden of faithful duplication of mitochondrial DNA, both in preventing spontaneous errors and in DNA repair synthesis, falls on pol gamma. Investigating the biological functions of pol gamma and its inhibitors aids our understanding of the sources of mtDNA mutations. In animal cells, pol gamma is composed of two subunits, a larger catalytic subunit of 125-140 kDa and second subunit of 35-55 kDa. The catalytic subunit contains DNA polymerase activity, 3'-5' exonuclease activity, and a 5'-dRP lyase activity. The accessory subunit is required for highly processive DNA synthesis and increases the affinity of pol gamma to the DNA.  (+info)

Mitochondrial complex I is deficient in renal oncocytomas. (48/884)

Renal oncocytomas are benign tumors characterized by dense accumulation of mitochondria the cause of which remains unknown so far. Consistently, mitochondrial DNA content and the amounts and catalytic activities of several oxidative phosphorylation (OXPHOS) complexes were known to be increased in these tumors, but it was not ascertained that the OXPHOS system was functional. Here we investigated mitochondrial complex I and found that its NADH dehydrogenase activity and protein content were specifically decreased in oncocytomas, in stark contrast with the parallel decrease of all respiratory chain complexes in other, malignant, renal tumors. We conclude that deficiency of complex I in oncocytomas might be the early event causing the increased mitochondrial biogenesis, attempting to compensate for the loss of OXPHOS function. Since other tumors were found to be linked to mitochondrial deficiencies like genetic alterations of fumarate hydratase or succinate dehydrogenase, oncocytoma could be the third type of benign tumor associated with impairment of mitochondrial ATP production in an oxidative, quiescent tissue. Besides, complex I enzyme activity was moderately decreased in the vicinity of oncocytomas, when compared with normal tissue adjacent to other renal tumors. This suggested that oncocytomas are the result of at least two serial modifications altering the mitochondrial respiratory chain.  (+info)