Changes in mitochondrial phosphorylative activity and adenylate energy charge of regenerating rabbit liver. (25/4345)

The changes in the cellular concentrations of ATP, ADP, and AMP and in oxidative phosphorylation of mitochondria were investigated in the remaining liver of partially hepatectomized rabbits. The energy charge (defined as half of the average number of anhydride-bonded phosphate groups per adenosine moiety) of the liver remnant decreased from 0.866 to 0.767 (p less than 0.01) within 24 hr after hepatectomy, and then increased to a substantially higher level than normal within 7 days. On the other hand, the mitochondrial phosphyorylative activity increased rapidly to 170 per cent of the control within 12 hr and then retruned to normal within 7 days. The mitochondrial phosphorylative activity was inversely correlated with energy charge of the liver remnant (r = -0.75, p less less than 0.01). The maximal enhancement of mitochondrial phosphorylative activity was found in mitochondria obtained from the liver remnant with the lowest level of energy charge, suggesting a response of mitochondria in vivo involving enhanced biosynthetic ATP-utilizing reactions at an early stage of the regenerating process. The enhancement of phosphorylative activity was accompanied by a rise in the respiratory control ratio, P/O ratio and state 3 respiration. The adenylate kinase [EC 2.7.4.3] activity in the liver remnant increased to more than 160% of the control within 2 days after partial hepatectomy, while the pyruvate kinase [EC 2.7.1.40] activity decreased remarkably. However, the changes in the two enzyme activities did not correlate with those of mitochondrial phosphorylative activity or the energy charge of the liver remnant.  (+info)

Efficiency of oxidative phosphorylation and energy dissipation by H+ ion recycling in rat-liver mitochondrial metabolizing pyruvate. (26/4345)

A method was developed for the calculation of metabolic fluxes through individual enzymatic reactions of pyruvate metabolism including the citric acid cycle in rat liver mitochondrial incubated at metabolic states between state 4 and state 3. This method is based on the measurement of the specific radioactivities of the products formed from [2-14C]pyruvate. With this procedure the energy balance of mitochondria incubated in the presence of [2-14C]pyruvate, ATP, bicarbonate and phosphate at different ATP/ADP ratios in the medium was calculated. The ATP/ADP ratios were maintained at a steady state with creatine kinase plus creatine as a phosphoryl acceptor. The calculations revealed that by adding increasing concentrations of creatine up to 20 mM the energy dissipated by the mitochondria decreased but showed a local maximum at 13mM creatine. Omission of bicarbonate from the medium led to a shift of this maximum. When energy dissipation was minimal the overall P/O ratio was maximal. The amount of energy dissipated was paralleled by the magnitude of the pH gradient across the inner membrane. From these results it was concluded that the recycling of H+ ions which consists of a passive leakage of H+ ions into the matrix and an active extrusion of these ions out of this compartment, is an important energy dissipating process. The H+ ion recycling is thus one of the processes which give rise to the state 4 respiration in mitochondria.  (+info)

Uptake and effects of copper in rat liver mitochondria. (27/4345)

The rate and extent of Cu2+ uptake by rat liver mitochondria was measured under various conditions. 1. The uptake is both greater and faster without an energy supply. 2. The uptake, when occuring in ionic media, has a biphasic character, that is it always slows down after an initial burst, and then re-accelerates. 3. Uptake of Cu2+ in the presence of energy initiates K+ uptake from K+-containing media with accompanying swelling and respiratory stimulation. Depending on the amounts of Cu2+ added and the K+ concentration, an inhibition of respiration later ensues. 4. Chelation of the Cu2+ by substrates (notably glutamate) decreases the effects. 5. Prior exposure to Cu2+ decreases or prevents energy-dependent Ca2+ uptake.  (+info)

Transbilayer movement and distribution of spin-labelled phospholipids in the inner mitochondrial membrane. (28/4345)

The transmembrane diffusion and equilibrium distribution of spin-labelled phosphatidylethanolamine (PE*), phosphatidylcholine (PC*) and cardiolipin (CL*) were investigated in purified mitochondrial inner membranes using electron spin resonance spectroscopy. Using the back exchange technique, we found that the outside-inside movement of PE* and PC* in beef-heart inner mitochondrial membranes was rapid (t1/2 in the range 10-15 min at 30 degrees C). The steady-state distributions in non-energised mitoplasts were approximately 30% in the inner leaflet for PC* and 39% for PE*. Within the limits of probe concentration that can possibly be used in these experiments, the initial velocity of the inward movement was not saturable with respect to the amount of analogue added to the membranes, suggesting that the spin-labelled phospholipids diffused passively between the two leaflets of the inner mitochondrial membrane. In energised mitoplasts, PC* behaviour was not affected, PE* diffused approximately two times faster toward the inner monolayer but reached the same plateau. Treatment of energised mitochondria with N-ethylmaleimide did not affect PC* diffusion, while the kinetics of PE* internalisation became identical to that of PC*. Similar results were found when PC* and PE* movements were studied in mitoplasts from beef heart, rat liver or yeast. The spin-labelled cardiolipin, which possesses four long chains, had to be introduced in the mitoplast with some ethanol. After equilibration (t1/2 of the order of 13 min at 30 degrees C), the transmembrane distribution suggested that approximately half of the cardiolipin analogue remained in the outer leaflet. These results do not allow us to determine if a specific protein (or flippase) is involved in the phospholipid transmembrane traffic within inner mitochondrial membranes, but they show that lipids can rapidly flip through the mitochondrial membrane.  (+info)

Down-regulation of rat mitochondrial branched-chain 2-oxoacid dehydrogenase kinase gene expression by glucocorticoids. (29/4345)

The mammalian mitochondrial branched-chain 2-oxoacid dehydrogenase (BCOD) complex is regulated by a reversible phosphorylation (inactivation)/dephosphorylation (activation) cycle. In the present study, the effects of glucocorticoids on the level of BCOD kinase mRNA were investigated in rat hepatoma cell lines (H4IIE and FTO-2B), as well as in the rat. In H4IIE cells, dexamethasone was found to significantly reduce steady-state concentrations of BCOD kinase mRNA after a 48 h culture, and this was correlated with a 2-fold increase in the dephosphorylated form of the BCOD complex. The half-life of the kinase mRNA in H4IIE cells was not affected by dexamethasone treatment. Therefore, the decrease in the steady-state kinase mRNA level resulting from dexamethasone treatment was not caused by changes in mRNA stability, which raised the possibility of regulation at the level of gene transcription. To identify the negative glucocorticoid-responsive element in the kinase promoter, nested deletion constucts in the 3.0 kb promoter region were examined in H4IIE cells cultured in the presence or absence of dexamethasone. No significant differences in promoter activity were observed on either transient or stable transfection. The data showed that the glucocorticoid-responsive element was located outside the 3. 0 kb promoter region. At the physiological level, hepatic BCOD kinase mRNA levels were reduced in rats injected intraperitoneally with dexamethasone. This effect was liver-specific, and was not detected in other tissues. These results suggest that the down-regulation of kinase gene expression by glucocorticoids is mediated through a liver-specific or -enriched transcription factor(s).  (+info)

Thyroid hormone status and membrane n-3 fatty acid content influence mitochondrial proton leak. (30/4345)

Proton leak, as determined by the relationship between respiration rate and membrane potential, was lower in mitochondria from hypothyroid rats compared to euthyroid controls. Moreover, proton leak rates diminished even more when hypothyroid rats were fed a diet containing 5% of the lipid content as n-3 fatty acids. Similarly, proton leak was lower in euthyroid rats fed the 5% n-3 diet compared to one containing only 1% n-3 fatty acids. Lower proton leaks rates were associated with increased inner mitochondrial membrane levels of n-3 fatty acids and a decrease in the ratio of n-6/n-3 fatty acids. This trend was evident in the phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and cardiolipin phospholipid fractions. These results suggest that a significant portion of the effect of thyroid hormone status on proton leak is due to alterations in membrane fatty acid composition, primarily changes in n-3 content. Both the hypothyroid state and dietary effects appear to be mediated in part by inhibition of the Delta6- and Delta5-desaturase pathways.  (+info)

Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. (31/4345)

We recently reported the preferential accumulation of 8-hydroxydeoxyguanosine (8OHdG) adducts in cardiac mitochondrial DNA (mtDNA) following acute intoxication of rats with doxorubicin (C.M. Palmeira et al., Biochim. Biophys. Acta, 1321 (1997) 101-106). The concentration of 8OHdG adducts decreased to control values within 2 weeks. Since conventional antineoplastic therapy entails repeated administration of small doses of doxorubicin, it was of interest to characterize the kinetics for the accumulation and repair of 8OHdG adducts in the various DNA fractions. Weekly injections of doxorubicin (2 mg/kg, i.p.) to adult male Sprague-Dawley rats caused a cumulative dose-dependent increase in the concentration of 8OHdG adducts in both mtDNA and nuclear DNA (nDNA) from heart and liver. Following six weekly injections, the concentration of 8OHdG in cardiac mtDNA was 50% higher than liver mtDNA and twice that of cardiac nDNA. In contrast to the rapid repair of 8OHdG observed during the first days following an acute intoxicating dose of doxorubicin, the concentration of 8OHdG adducts remained constant between 1 and 5 weeks following the last injection. This was true for all DNA fractions examined. The cardioselective accumulation and persistence of 8OHdG adducts to mtDNA is consistent with the implication of mitochondrial dysfunction in the cumulative and irreversible cardiotoxicity observed clinically in patients receiving doxorubicin cancer chemotherapy.  (+info)

The effect of aging and an oxidative stress on peroxide levels and the mitochondrial membrane potential in isolated rat hepatocytes. (32/4345)

We have investigated the effect of ageing and of adriamycin treatment on the bioenergetics of isolated rat hepatocytes. Ageing per se, whilst being associated with a striking increase of hydrogen peroxide in the cells, induces only minor changes on the mitochondrial membrane potential. The adriamycin treatment induces a decrease of the mitochondrial membrane potential in situ and a consistent increase of the superoxide anion cellular content independently of the donor age. The hydrogen peroxide is significantly increased in both aged and adult rat hepatocytes, however, due to the high basal level in the aged cells, it is higher in aged rat cells not subjected to oxidative stress than that elicited by 50 microM adriamycin in young rat hepatocytes. The results suggest that a hydrogen peroxide increase in hepatocytes of aged rats is unable to induce major modifications of mitochondrial bioenergetics. This contrasts with the damaging effect of adriamycin, suggesting that the effects of the drug may be due to the concomitant high level of both superoxide and hydrogen peroxide.  (+info)