Loading...
(1/4345) Structural and functional changes in acute liver injury.

Carbon tetrachloride produces liver cell injury in a variety of animal species. The first structurally recognizable changes occur in the endoplasmic reticulum, with alteration in ribosome-membrane interactions. Later there is an increase in intracellular fat, and the formation of tangled nets of the ergastoplasm. At no time are there changes in mitochondria or single membrane limited bodies in cells with intact plasmalemma, although a relative increase in cell sap may appear. In dead cells (those with plasmalemma discontinuties) crystalline deposits of calcium phosphatase may be noted. Functional changes are related to the endoplasmic reticulum and the plasma membrane. An early decrease in protein synthesis takes place; an accumulation of neutral lipid is related to this change. Later alterations in the ergastoplasmic functions (e.g., mixed function oxidation) occurs. Carbon tetrachloride is not the active agent; rather, a product of its metabolism, probably the CC1, free radical, is. The mechanisms of injury include macromolecular adduction and peroxide propagation. A third possibility includes a cascade effect with the production of secondary and tertiary products, also toxic in nature, with the ability to produce more widespread damage to intracellular structures.  (+info)

(2/4345) Various forms of chemically induced liver injury and their detection by diagnostic procedures.

A large number of chemical agents, administered for therapeutic or diagnostic purposes, can produce various types of hepatic injury by several mechanisms. Some agents are intrinsically hepatotoxic, and others produce hepatic injury only in the rare, uniquely susceptible individual. Idiosyncrasy of the host is the mechanism for most types of drug-induced hepatic injury. It may reflect allergy to the drug or a metabolic aberation of the host permitting the accumulation of hepatotoxic metabolites. The syndromes of hepatic disease produced by drugs have been classified hepatocellular, hepatocanalicular, mixed and canalicular. Measurement of serum enzyme activities has provided a powerful tool for studies of hepatotoxicity. Their measurement requires awareness of relative specificity, knowledge of the mechanisms involved, and knowledge of the relationship between known hepatotoxic states and elevated enzyme activities.  (+info)

(3/4345) Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion.

Uncoupling protein 2 (UCP2) uncouples respiration from oxidative phosphorylation and may contribute to obesity through effects on energy metabolism. Because basal metabolic rate is decreased in obesity, UCP2 expression is predicted to be reduced. Paradoxically, hepatic expression of UCP2 mRNA is increased in genetically obese (ob/ob) mice. In situ hybridization and immunohistochemical analysis of ob/ob livers demonstrate that UCP2 mRNA and protein expression are increased in hepatocytes, which do not express UCP2 in lean mice. Mitochondria isolated from ob/ob livers exhibit an increased rate of H+ leak which partially dissipates the mitochondrial membrane potential when the rate of electron transport is suppressed. In addition, hepatic ATP stores are reduced and these livers are more vulnerable to necrosis after transient hepatic ischemia. Hence, hepatocytes adapt to obesity by up-regulating UCP2. However, because this decreases the efficiency of energy trapping, the cells become vulnerable to ATP depletion when energy needs increase acutely.  (+info)

(4/4345) delta-Aminolevulinate synthetases in the liver cytosol fraction and mitochondria of mice treated with allylisopropylacetamide and 3,5-dicarbethoxyl-1,4-dihydrocollidine.

Hepatic delta-aminolevulinate (ALA) synthetase was induced in mice by the administration of allylisopropylacetamide (AIA) and 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC). In both cases, a significant amount of ALA synthetase accumulated in the liver cytosol fraction as well as in the mitochondria. The apparent molecular weight of the cytosol ALA synthetase was estimated to be 320,000 by gel filtration, but when the cytosol ALA synthetase was subjected to sucrose density gradient centrifugation, it showed a molecular weight of 110,000. In the mitochondria, there were two different sizes of ALA synthetase with molecular weights of 150,000 and 110,000, respectively; the larger enzyme was predominant in DDC-treated mice, whereas in AIA-treated mice and normal mice the enzyme existed mostly in the smaller form. When hemin was injected into mice pretreated with DDC, the molecular size of the mitochondrial ALA synthetase changed from 150,000 to 110,000. The half-life of ALA synthetase in the liver cytosol fraction was about 30 min in both the AIA-treated and DDC-treated mice. The half-life of the mitochondrial ALA synthetase in AIA-treated mice and normal mice was about 60 min, but in DDC-treated mice the half-life was as long as 150 min. The data suggest that the cytosol ALA synthetase of mouse liver is a protein complex with properties very similar to those of the cytosol ALA synthetase of rat liver, which has been shown to be composed of the enzyme active protein and two catalytically inactive binding proteins, and that ALA synthetase may be transferred from the liver cytosol fraction to the mitochondria with a size of about 150,000 daltons, followed by its conversion to enzyme with a molecular weight of 110,000 within the mitochondria. The process of intramitochondrial enzyme degradation seems to be affected in DDC-treated animals.  (+info)

(5/4345) Lectin receptor sites on rat liver cell nuclear membranes.

The presence and localization of lectin receptor sites on rat liver cell nuclear and other endomembranes was studied by light and electron microscopy using fluorescein and ferritin-coupled lectin conjugates. Isolated nuclei labelled with fluorescein-conjugated Concanavalin A (Con A) or wheat germ agglutinin (WGA) often showed membrane staining, which sometimes was especially bright on small stretches of the nuclear surface. Unlabelled nuclei and nuclei with a complete ring fluorescence were also seen. The nuclear fluorescence corresponded in intensity to that seen on the surface of isolated rat liver cells. Con A-ferritin particles were seldom detected on the cytoplasmic surface of the intact nuclear envelope. However, at places where the 2 leaflets of the envelope were widely separated or where the outer nuclear membrane was partly torn away, heavy labelling was seen on the cisternal surface of both the inner and outer nuclear membranes. Labelling with Con A-ferritin was also found on the cisternal side of rough endoplasmic reticulum present in the specimens. No labelling was seen on the cytoplasmic surface of mitochondrial outer membrane. The results demonstrate the presence of binding sites for Con A and WGA in nuclei and an asymmetric localization of these sites on the cisternal side of ribosome-carrying endomembranes in rat liver cells.  (+info)

(6/4345) Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state.

In the present study we show that N-acetylsphingosine (C2-ceramide), N-hexanoylsphingosine (C6-ceramide), and, to a much lesser extent, C2-dihydroceramide induce cytochrome c (cyto c) release from isolated rat liver mitochondria. Ceramide-induced cyto c release is prevented by preincubation of mitochondria with a low concentration (40 nM) of Bcl-2. The release takes place when cyto c is oxidized but not when it is reduced. Upon cyto c loss, mitochondrial oxygen consumption, mitochondrial transmembrane potential (Delta Psi), and Ca2+ retention are diminished. Incubation with Bcl-2 prevents, and addition of cyto c reverses the alteration of these mitochondrial functions. In ATP-energized mitochondria, ceramides do not alter Delta Psi, neither when cyto c is oxidized nor when it is reduced, ruling out a nonspecific disturbance by ceramides of mitochondrial membrane integrity. Furthermore, ceramides decrease the reducibility of cyto c. We conclude that the apoptogenic properties of ceramides are in part mediated via their interaction with mitochondrial cyto c followed by its release and that the redox state of cyto c influences its detachment by ceramide from the inner mitochondrial membrane.  (+info)

(7/4345) Physiological role of the N-terminal processed P4501A1 targeted to mitochondria in erythromycin metabolism and reversal of erythromycin-mediated inhibition of mitochondrial protein synthesis.

Recently, we showed that the major species of beta-naphthoflavone-inducible rat liver mitochondrial P450MT2 consists of N-terminal truncated microsomal P4501A1 (+33/1A1) and that the truncated enzyme exhibits different substrate specificity as compared with intact P4501A1. The results of the present study show that P450MT2 targeted to COS cell mitochondria by transient transfection of P4501A1 cDNA is localized inside the mitochondrial inner membrane in a membrane-extrinsic orientation. Co-expression with wild type P4501A1 and adrenodoxin (Adx) cDNAs resulted in 5-7-fold higher erythromycin N-demethylation (ERND) in the mitochondrial fraction but minimal changes in the microsomal fraction of transfected cells. Erythromycin, a potent inhibitor of bacterial and mitochondrial protein synthesis, caused 8-12-fold higher accumulation of CYP1A1 mRNA, preferential accumulation of P450MT2, and 5-6-fold higher ERND activity in the mitochondrial compartment of rat C6 glioma cells. Consistent with the increased mitochondrial ERND activity, co-expression with P4501A1 and Adx in COS cells rendered complete protection against erythromycin-mediated mitochondrial translation inhibition. Mutations that specifically affect the mitochondrial targeting of P4501A1 also abolished protection against mitochondrial translation inhibition. These results for the first time suggest a physiological function for the xenobiotic inducible cytochrome P4501A1 against drug-mediated mitochondrial toxicity.  (+info)

(8/4345) Inhibition of nucleoside diphosphate kinase in rat liver mitochondria by added 3'-azido-3'-deoxythymidine.

The effect of 3'-azido-3'-deoxythymidine on nucleoside diphosphate kinase of isolated rat liver mitochondria has been studied. This is done by monitoring the increase in the rate of oxygen uptake by nucleoside diphosphate (TDP, UDP, CDP or GDP) addition to mitochondria in state 4. It is shown that 3'-azido-3'-deoxythymidine inhibits the mitochondrial nucleoside diphosphate kinase in a competitive manner, with a Ki value of about 10 microM as measured for each tested nucleoside diphosphate. It is also shown that high concentrations of GDP prevent 3'-azido-3'-deoxythymidine inhibition of the nucleoside diphosphate kinase.  (+info)