Occupational risk factors of lung cancer: a hospital based case-control study. (1/148)

OBJECTIVES: To investigate the relation between lung cancer and exposure to occupational carcinogens in a highly industrialised region in western Europe. METHODS: In a case-control study 478 cases and 536 controls, recruited from 10 hospitals in the Antwerp region, were interviewed. Cases were male patients with histologically confirmed lung cancer; controls were male patients without cancer or primary lung diseases. Data were collected by questionnaires to obtain information on occupations, exposures, and smoking history. Job titles were coded with the Office of Populations, Censuses and Surveys industrial classification. Exposure was assessed by self report and by job-task exposure matrix. Exposure odds ratios were calculated with logistic regression analysis adjusted for age, smoking history, and marital and socio-economic status. RESULTS: A job history in the categories manufacturing of transport equipment other than automobiles (for example, shipyard workers), transport support services (for example, dockers), and manufacturing of metal goods (for example, welders) was significantly associated with lung cancer (odds ratios (ORs) 2.3, 1.6, and 1.6 respectively). These associations were independent of smoking, education, civil, and economic status. Self reported exposure to potential carcinogens did not show significant associations with lung cancer, probably due to nondifferential misclassification. When assessed by job-task exposure matrix, exposure to molybdenum, mineral oils, and chromium were significantly associated with lung cancer. A strong association existed between smoking and lung cancer: OR of ex-smokers 4.2, OR of current smokers 14.5 v non-smokers. However, smoking did not confound the relation between occupational exposure and lung cancer. CONCLUSIONS: The study has shown a significant excess risk of lung cancer among workers in manufacturing of metal goods, manufacturing of transport equipment (other than automobiles), and transport support services. Assessment of exposure to specific carcinogens resulted in significant associations of chromium, mineral oils, and molybdenum with lung cancer. This study is, to our knowledge, the first study reporting a significant association between occupational exposure to molybdenum and lung cancer.  (+info)

Pulmonary hypoplasia induced by liquid paraffin injection into fetal thoracic cavity with special reference to renal development in rats. (2/148)

The present study was designed to clarify lung-kidney interrelation in fetal rats. On fetal day 20, liquid paraffin (LP) was injected into fetal thoracic cavity to produce pulmonary hypoplasia. No significant difference in body and renal weights were noted between the LP injected and control fetuses. The weight of lung, however, was significantly lower in the LP injected fetuses than in the control ones. Histological examinations on the lung and kidney of the LP injected fetuses revealed that the lung was hypoplastic characterized by rich interstitium and reduced air spaces. In the kidney, mature types of glomeruli and profiles of proximal tubules near them were increased in number. Furthermore, strong expression of EGF immunoreactivity was noted in the apical cytoplasm of epithelium of the proximal tubules in the LP injected fetuses. These findings indicate that lung-kidney interrelation exists in fetal rats during late gestational days, and suggest that interruption of the lung development induces accelerated growth of the kidney in fetal rats.  (+info)

Mineral oil metal working fluids (MWFs)-development of practical criteria for mist sampling. (3/148)

Not all mineral oil metalworking fluids (MWFs) in common use form stable airborne mists which can be sampled quantitatively onto a filter. This much has been known for some time but no simple method of identifying oils too volatile for customary filter sampling has been developed. Past work was reviewed and experiments were done to select simple criteria which would enable such oils to be identified. The sampling efficiency for a range of commercial mineral oil MWF were assessed by drawing clean air through spiked filters at 2 l. min(-1) for periods up to 6 h before analysis. The physical properties of MWF are governed by their composition and kinematic viscosity was found to be the most practical and easily available index of the potential for sample loss from the filter. Oils with viscosities greater that 18 cSt (at 40 degrees C) lost less than 5% of their weight, whereas those with viscosities less than 18 cSt gave losses up to 71%. The losses from the MWF were mostly aliphatic hydrocarbons (C(10)-C(18)), but additives such as alkyl benzenes, esters, phenols and terpene odorants were also lost. The main recommendation to arise from the work is that filter sampling can be performed on mineral oils with viscosities of 18 cSt (at 40 degrees C) or more with little evaporative losses from the filter. However, sampling oils with viscosities less than 18 cSt will produce results which may significantly underestimate the true value. Over a quarter of UK mineral oil MWFs are formulated from mineral oils with viscosities less than 18 cSt (at 40 degrees C). The problem of exposure under-estimation and inappropriate exposure sampling could be widespread. Further work is being done on measurement of mixed phase mineral oil mist exposure.  (+info)

Effect of liquid paraffin on antibody responses and local adverse reactions of bivalent oil adjuvanted vaccines containing newcastle disease virus and infectious bronchitis virus. (4/148)

Effects of liquid paraffin on antibody responses and local adverse reactions after intramuscular injection of oil adjuvanted vaccines containing Newcastle disease (ND) and infectious bronchitis (IB) virus were investigated in chickens. Each vaccine was prepared with a liquid paraffin such as Carnation, Crystol 52 and Lytol. These vaccines induced sustained antibody responses against ND and IB. Among local adverse reactions, Lytol induced granulomatous reactions and abscesses, but Carnation and Crystol 52 did not. The residual weight of liquid paraffin at the injection site decreased in the order Carnation, Crystol 52, Lytol. Crystol 52 was composed of relatively few short-chain hydrocarbons (i.e., n-C20H42). The vaccine with liquid paraffin mainly composed of n-C16H34-n-C20H42 was suggested to induce fewer adverse reactions.  (+info)

Using selective withdrawal to coat microparticles. (5/148)

We report a method that uses the process of selective withdrawal of one fluid through a second immiscible fluid to coat small particles with polymer films. Fluid is withdrawn through a tube with its orifice slightly above a water-oil interface. Upon increasing the flow rate, there is a transition from a state where only oil is withdrawn to a state where the water, containing the particles to be coated and appropriate prepolymer reagents, is entrained in a thin spout along with the oil. The entrained particles eventually cause the spout interface to break, producing a thin coat of controllable thickness around each particle, which can be subsequently polymerized using chemical reagents, light, or heat. This method allows flexibility in the chemical composition and thickness of the conformal coatings.  (+info)

Presence of polyribosomes in condiospores of Botryodiplodia theobromae harvested with nonaqueous solvents. (6/148)

Polyribosomes detected in extracts of spores harvested with water also were found in extracts prepared from spores harvested with nonaqueous fluids.  (+info)

Cumulative exposure to dust causes accelerated decline in lung function in tunnel workers. (7/148)

OBJECTIVES: To examine whether underground construction workers exposed to tunnelling pollutants over a follow up period of 8 years have an increased risk of decline in lung function and respiratory symptoms compared with reference subjects working outside the tunnel atmosphere, and relate the findings to job groups and cumulative exposure to dust and gases. METHODS: 96 Tunnel workers and a reference group of 249 other heavy construction workers were examined in 1991 and re-examined in 1999. Exposure measurements were carried out to estimate personal cumulative exposure to total dust, respirable dust, alpha-quartz, oil mist, and nitrogen dioxide. The subjects answered a questionnaire on respiratory symptoms and smoking habits, performed spirometry, and had chest radiographs taken. Radiological signs of silicosis were evaluated (International Labour Organisation (ILO) classification). Atopy was determined by a multiple radioallergosorbent test (RAST). RESULTS: The mean exposure to respirable dust and alpha-quartz in tunnel workers varied from 1.2-3.6 mg/m3 (respirable dust) and 0.019-0.044 mg/m3 (alpha-quartz) depending on job task performed. Decrease in forced expiratory volume in 1 second (FEV1) was associated with cumulative exposure to respirable dust (p<0.001) and alpha-quartz (p=0.02). The multiple regression model predicted that in a worker 40 years of age, the annual decrease in FEV1 would be 25 ml in a non-exposed non-smoker, 35 ml in a non-exposed smoker, and 50-63 ml in a non-smoking tunnel worker (depending on job). Compared with the reference group the odds ratio for the occurrence of new respiratory symptoms during the follow up period was increased in the tunnel workers and associated with cumulative exposure to respirable dust. CONCLUSIONS: Cumulative exposures to respirable dust and alpha-quartz are the most important risk factors for airflow limitation in underground heavy construction workers, and cumulative exposure to respirable dust is the most important risk factor for respiratory symptoms. The finding of accelerated decline in lung function in tunnel workers suggests that better control of exposures is needed.  (+info)

Effect of nonionic surfactant on transport of surface-active and non-surface-active model drugs and emulsion stability in triphasic systems. (8/148)

The effect of surfactant concentration on transport kinetics in emulsions using surface-active (phenobarbital, barbital) and non- surface-active (phenylazoaniline, benzocaine) model drugs is determined. Mineral oil was chosen as the oil phase and the nonionic surfactant polyoxyethylene-10-oleyl-ether (Brij 97) was chosen as the emulsifier. Model drug transport in the triphasic systems was investigated using side-by-side diffusion cells mounted with hydrophilic dialysis membranes (molecular weight cutoffs 1 kd and 50 kd) and a novel bulk equilibrium reverse dialysis bag technique. Emulsion stability was determined by droplet size analysis as a function of time, temperature, and the presence of model drugs, using photon correlation spectroscopy. Mineral oil/water (O/W) partition coefficients and aqueous solubilities were determined in the presence of surfactant. The transport rates of model drugs in emulsions increased with an increase in Brij 97 micellar concentrations up to 1.0% wt/vol and then decreased at higher surfactant concentrations. The transport profiles of the model drugs appeared to be governed by model drug O/W partition coefficient values and by micellar shape changes at higher surfactant concentrations. Total transport rates of phenobarbital and barbital were faster than those of phenylazoaniline and benzocaine. Excess surfactant affected the transport rates of the model drugs in the emulsions depending on drug surface activity and lipophilicity.  (+info)