Microvirus of chlamydia psittaci strain guinea pig inclusion conjunctivitis: isolation and molecular characterization. (1/7)

The authors report the isolation and molecular characterization of a bacteriophage, φCPG1, which infects CHLAMYDIA: psittaci strain Guinea pig Inclusion Conjunctivitis. Purified virion preparations contained isometric particles of 25 nm diameter, superficially similar to spike-less members of the φX174 family of bacteriophages. The single-stranded circular DNA genome of φCPG1 included five large ORFs, which were similar to ORFs in the genome of a previously described CHLAMYDIA: bacteriophage (Chp1) that infects avian C. psittaci. Three of the ORFs encoded polypeptides that were similar to those in a phage infecting the mollicute Spiroplasma melliferum, a pathogen of honeybees. Lesser sequence similarities were seen between two ORF products and the major capsid protein of the φX174 coliphage family and proteins mediating rolling circle replication initiation in phages, phagemids and plasmids. Phage φCPG1 is the second member of the genus CHLAMYDIAMICROVIRUS:, the first to infect a member of a CHLAMYDIA: species infecting mammals. Similarity searches of the nucleotide sequence further revealed a highly conserved (75% identity) 375 base sequence integrated into the genome of the human pathogen Chlamydia pneumoniae. This genomic segment encodes a truncated 113 residue polypeptide, the sequence of which is 72% identical to the amino-terminal end of the putative replication initiation protein of φCPG1. This finding suggests that C. pneumoniae has been infected by a phage related to φCPG1 and that infection resulted in integration of some of the phage genome into the C. pneumoniae genome.  (+info)

Profiles of adaptation in two similar viruses. (2/7)

The related bacteriophages phiX174 and G4 were adapted to the inhibitory temperature of 44 degrees and monitored for nucleotide changes throughout the genome. Phage were evolved by serial transfer at low multiplicity of infection on rapidly dividing bacteria to select genotypes with the fastest rates of reproduction. Both phage showed overall greater fitness effects per substitution during the early stages of adaptation. The fitness of phiX174 improved from -0.7 to 5.6 doublings of phage concentration per generation. Five missense mutations were observed. The earliest two mutations accounted for 85% of the ultimate fitness gain. In contrast, G4 required adaptation to the intermediate temperature of 41.5 degrees before it could be maintained at 44 degrees. Its fitness at 44 degrees increased from -2.7 to 3.2, nearly the same net gain as in phiX174, but with three times the opportunity for adaptation. Seventeen mutations were observed in G4: 14 missense, 2 silent, and 1 intergenic. The first 3 missense substitutions accounted for over half the ultimate fitness increase. Although the expected pattern of periodic selective sweeps was the most common one for both phage, some mutations were lost after becoming frequent, and long-term polymorphism was observed. This study provides the greatest detail yet in combining fitness profiles with the underlying pattern of genetic changes, and the results support recent theories on the range of fitness effects of substitutions fixed during adaptation.  (+info)

The genetic basis of thermal reaction norm evolution in lab and natural phage populations. (3/7)

Two major goals of laboratory evolution experiments are to integrate from genotype to phenotype to fitness, and to understand the genetic basis of adaptation in natural populations. Here we demonstrate that both goals are possible by re-examining the outcome of a previous laboratory evolution experiment in which the bacteriophage G4 was adapted to high temperatures. We quantified the evolutionary changes in the thermal reaction norms--the curves that describe the effect of temperature on the growth rate of the phages--and decomposed the changes into modes of biological interest. Our analysis indicated that changes in optimal temperature accounted for almost half of the evolutionary changes in thermal reaction norm shape, and made the largest contribution toward adaptation at high temperatures. Genome sequencing allowed us to associate reaction norm shape changes with particular nucleotide mutations, and several of the identified mutations were found to be polymorphic in natural populations. Growth rate measures of natural phage that differed at a site that contributed substantially to adaptation in the lab indicated that this mutation also underlies thermal reaction norm shape variation in nature. In combination, our results suggest that laboratory evolution experiments may successfully predict the genetic bases of evolutionary responses to temperature in nature. The implications of this work for viral evolution arise from the fact that shifts in the thermal optimum are characterized by tradeoffs in performance between high and low temperatures. Optimum shifts, if characteristic of viral adaptation to novel temperatures, would ensure the success of vaccine development strategies that adapt viruses to low temperatures in an attempt to reduce virulence at higher (body) temperatures.  (+info)

Characterization and function of putative substrate specificity domain in microvirus external scaffolding proteins. (4/7)

Microviruses (canonical members are bacteriophages phiX174, G4, and alpha3) are T=1 icosahedral virions with an assembly pathway mediated by two scaffolding proteins. The external scaffolding protein D plays a major role during morphogenesis, particularly in icosahedral shell formation. The results of previous studies, conducted with a cloned chimeric external scaffolding gene, suggest that the first alpha-helix acts as a substrate specificity domain, perhaps mediating the initial coat-external scaffolding protein interaction. However, the expression of a cloned gene could lead to protein concentrations higher than those found in typical infections. Moreover, its induction before infection could alter the timing of the protein's accumulation. Both of these factors could drive or facilitate reactions that may not occur under physiological conditions or before programmed cell lysis. In order to elucidate a more detailed mechanistic model, a chimeric external scaffolding gene was placed directly in the phiX174 genome under wild-type transcriptional and translational control, and the chimeric virus, which was not viable on the level of plaque formation, was characterized. The results of the genetic and biochemical analyses indicate that alpha-helix 1 most likely mediates the nucleation reaction for the formation of the first assembly intermediate containing the external scaffolding protein. Mutants that can more efficiently use the chimeric scaffolding protein were isolated. These second-site mutations appear to act on a kinetic level, shortening the lag phase before virion production, perhaps lowering the critical concentration of the chimeric protein required for a nucleation reaction.  (+info)

The complete genome sequence and genetic analysis of PhiCA82 a novel uncultured microphage from the turkey gastrointestinal system. (5/7)

 (+info)

Chemical synthesis of bacteriophage G4. (6/7)

 (+info)

The role of negative superhelicity and length of homology in the formation of paranemic joints promoted by RecA protein. (7/7)

Escherichia coli RecA protein pairs homologous DNA molecules to form paranemic joints when there is an absence of a free end in the region of homologous contact. Paranemic joints are a key intermediate in homologous recombination and are important in understanding the mechanism for a search of homology. The efficiency of paranemic joint formation depended on the length of homology and the topological forms of the duplex DNA. The presence of negative superhelicity increased the pairing efficiency and reduced the minimal length of homology required for paranemic joint formation. Negative superhelicity stimulated joint formation by favoring the initial unwinding of duplex DNA that occurred during the homology search and was not essential in the maintenance of the paired structure. Regardless of length of homology, formation of paranemic joints using circular duplex DNA required the presence of more than six negative supercoils. Above six negative turns, an increasing degree of negative superhelicity resulted in a linear increase in the pairing efficiency. These results support a model of two distinct kinds of DNA unwinding occurring in paranemic joint formation: an initial unwinding caused by heterologous contacts during synapsis and a later one during pairing of the homologous molecules.  (+info)