gamma-L-glutamyl-L-DOPA inhibits Na(+)-phosphate cotransport across renal brush border membranes and increases renal excretion of phosphate. (17/2805)

BACKGROUND: For treatment of phosphate (Pi) overload in various pathophysiological states, an agent that selectively increases renal Pi excretion would be of major value. Previously, we have shown that dopamine (DA) inhibits Na(+)-Pi cotransport in renal epithelia. However, the administration of DA or its immediate precursor L-DOPA increases DA in multiple tissues. Synthetic dipeptide gamma-L-glutamyl-L-DOPA (gludopa) can serve as an inactive precursor (pro-pro-drug) of DA. This study tested the hypothesis that, because of the unique colocalization of gamma-glutamyltransferase (gamma-GT), aromatic amino acid decarboxylase, Na(+)-Pi cotransporter, and Na(+)-L-DOPA cotransporter in brush border membrane (BBM) of proximal tubular cells, gludopa may elicit phosphaturia by action of DA generated within the kidney. METHODS: Thyroparathyrectomized rats were given placebo, or gludopa, or gludopa + gamma-GT inhibitor acivicin. Urinary excretion of Pi, Ca2+, Na+, K+, DA, cAMP, and cGMP was determined, and Na(+)-Pi cotransport was measured in BBM prepared from kidneys of rats at the end of the experiment. RESULTS: The administration of gludopa resulted in: (a) an inhibition of Na(+)-Pi cotransport, but not cotransport of Na(+)-proline and Na(+)-alanine in BBM; (b) an increase (+300%) of fractional excretion (FE) of Pi and a drop (-35%) of plasma Pi, whereas the plasma levels and FEs of Ca2+, Na+, and K+ were unchanged; (c) an increase in urinary excretion of cAMP. but not cGMP; (d) a 1000-fold increase of urinary excretion of DA, without a change in excretion of norepinephrine; and (e) an incubation of gludopa with BBM in vitro, which caused a release of L-DOPA, and the in vivo administration of acivicin, which blocked actions of gludopa to inhibit Na(+)-Pi cotransport and to increase urinary excretions of Pi and DA. CONCLUSIONS: We conclude that colocalization of enzymes of biotransformation, BBM transporters, and the autocrine/paracrine DA system in cells of proximal tubules constitutes a cellular basis for the potent and specific phosphaturic action of gludopa.  (+info)

Effect of hyposmotic challenge on microvillous membrane potential in isolated human placental villi. (18/2805)

This study examined the effect of hyposmotic solutions on the syncytiotrophoblast microvillous membrane potential (Em) in mature intermediate villi isolated from term human placentas. When villi were exposed to a control solution (280 mosmol/kgH2O; 116 mM NaCl) and then to either a 138-hyposmotic (138 mosmol/kgH2O; 37 mM NaCl) or 170-hyposmotic (170 mosmol/kgH2O; 55 mM NaCl) solution, there was a significant hyperpolarization of Em (-5.1 +/- 1.5 mV, P < 0.01 and -5.0 +/- 0.5 mV, P < 0.001, respectively; n = 10), which was reversible on removal of the hyposmotic stimulus. Low-NaCl (37 and 55 mM) solutions made isosmotic with control (i.e., 280 mosmol/kgH2O) by addition of raffinose did not significantly alter Em, suggesting that reducing NaCl concentration per se had no effect on Em. Exposure to 170-hyposmotic solution in the presence of 5 mM BaCl2 depolarized Em by +4.1 +/- 0.7 mV (P < 0.001, n = 6); BaCl2 similarly depolarized Em when added in control solution (+5.6 +/- 1. 1 mV, n = 5). Exposure to 170-hyposmotic solution containing 1 mM DIDS hyperpolarized Em by -9.0 +/- 1.7 mV (P < 0.001, n = 5). This degree of hyperpolarization was significantly greater than that observed in hyposmotic solution alone (P < 0.01) but was not different from the hyperpolarization when DIDS was added to control solution (-7.4 +/- 0.2 mV, n = 6). We conclude 1) that Ba2+-sensitive K+ conductances and DIDS-sensitive anion conductances contribute to the resting potential of the syncytiotrophoblast microvillous membrane and 2) that the syncytiotrophoblast microvillous membrane responds to a hyposmotic stimulus by activating both Ba2+-sensitive K+ and DIDS-sensitive anion conductances.  (+info)

Association of myosin I alpha with endosomes and lysosomes in mammalian cells. (19/2805)

Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIalpha) is associated with endosomes and lysosomes. We show that the overproduction of MMIalpha or the production of nonfunctional truncated MMIalpha affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIalpha, promote the dissociation of MMIalpha from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIalpha might therefore be involved in membrane trafficking occurring between endosomes and lysosomes.  (+info)

Modified LDLs induce and bind to membrane ruffles on macrophages. (20/2805)

Macrophage foam cell formation in vitro requires uptake of modified low density lipoproteins (LDL) such as acetylated LDL (AcLDL) and moderately oxidized LDL (OxLDL), or beta-migrating very low density lipoprotein (betaVLDL), a naturally occurring lipoprotein. Incubation ofmacrophages with AcLDL and OxLDL resulted in stimulation of membrane ruffle formation, while betaVLDL primarily resulted in increased numbers of microvilli. Time-lapse Allen video enhanced contrast differential interference contrast (AVEC-DIC) light microscopy and correlative whole mount intermediate-voltage transmission electron microscopy (IVEM) was used to examine the dynamics ofAcLDL stimulated membrane ruffling and membrane ruffle ultrastructure. Stereo 3D surface replicas confirmed that AcLDL bound to these AcLDL-induced membrane ruffles. Quantification of the plasma membrane surface area after incubation with AcLDL, betaVLDL or LDL confirmed that AcLDL stimulated membrane ruffling, while betaVLDL and LDL stimulated microvilli formation. These studies suggest that modified LDLs induce circular membrane ruffles and modified LDLs bind to these ligand-induced membrane ruffles.  (+info)

Dissociation between growth arrest and differentiation in Caco-2 subclone expressing high levels of sucrase. (21/2805)

Growth arrest and cell differentiation are generally considered temporally and functionally linked phenomena in small intestinal crypt cells and colon tumor cell lines (Caco-2, HT-29). We have derived a Caco-2 subclone (NGI3) that deviates from such a paradigm. In striking contrast with the parental cells, proliferative and subconfluent NGI3 cells were found to express sucrase-isomaltase (SI) mRNA and to synthesize relatively high levels of SI, dipeptidyl peptidase IV, and aminopeptidase N (APN). In postconfluent cells, little difference was seen in SI mRNA levels between Caco-2 and NGI3 cells, but the latter still expressed much higher levels of SI that could be attributed to higher rates of translation. APN expression was also greatly enhanced in NGI3 cells. To determine whether high levels of brush-border enzymes correlated with expression of cell-cycle regulatory proteins, we investigated their relative cellular levels in growing and growth-arrested cells. The results showed that the cyclin-dependent kinase inhibitors (p21 and p27) and D-type cyclins (D1 and D3) were all induced in postconfluent cells, but NGI3 cells expressed much higher levels of p21. This study demonstrated that cell growth and expression of differentiated traits are not mutually exclusive in intestinal epithelial cells and provided evidence indicating that posttranscriptional events play an important role in regulation of SI expression.  (+info)

How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation. (22/2805)

In vertebrate visual pigments, a glutamic acid serves as a negative counterion to the positively charged chromophore, a protonated Schiff base of retinal. When photoisomerization leads to the Schiff base deprotonating, the anionic glutamic acid becomes protonated, forming a neutral species that activates the visual cascade. We show that in octopus rhodopsin, the glutamic acid has no anionic counterpart. Thus, the "counterion" is already neutral, so no protonated form of an initially anionic group needs to be created to activate. This helps to explain another observation-that the active photoproduct of octopus rhodopsin can be formed without its Schiff base deprotonating. In this sense, the mechanism of light activation of octopus rhodopsin is simpler than for vertebrates, because it eliminates one of the steps required for vertebrate rhodopsins to achieve their activating state.  (+info)

Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. (23/2805)

BACKGROUND: We recently reported that the administration of niceritorol (a nicotinic acid derivative which improves lipid metabolism and peripheral circulation, and is used for the treatment of hyperlipidaemia and impaired peripheral circulation) to patients with hyperphosphataemia undergoing dialysis decreased the serum phosphate (Pi) concentration. We found that this was due to an acceleration of faecal Pi excretion by niceritrol. METHODS: Intestinal brush border membrane vesicles (BBMVs) were prepared from rat jejunum, and the Na+-dependent and Na+-independent Pi transport activities in these vesicles were measured. In addition, the functional Pi transporter from rat small intestine was injected in Xenopus oocytes, and the effect of nicotinamide on the levels of its expression were measured by northern blotting. RESULTS: The Na+-dependent component was significantly decreased in the BBMVs isolated from rats treated with nicotinamide, while the Na+-independent component was not changed. Kinetic studies demonstrated that the decreased activity was due to reduction of the Vmax value and not an elevation of the Km values. When poly(A)+RNA from rats treated with nicotinamide was microinjected into Xenopus oocytes, the Pi transport activity was significantly decreased compared with that in the control animals. In addition, there were no significant changes in Na/Pi cotransporters and activators, but the vitamin D receptor mRNA level was reduced to 80% of the control level. CONCLUSIONS: These observations suggest that nicotinamide may regulate the expression of a major functional Na/Pi cotransporter in the rat small intestine.  (+info)

Membrane topography of the renal phosphate carrier NaPi-2: limited proteolysis studies. (24/2805)

The rat sodium/phosphate cotransporter NaPi-2 is a 70 kDa polypeptide (p70) for which eight transmembrane segments have been predicted. We have shown that p70 exists predominantly as p45 and p40 fragments which are linked by disulfide bonds. In this work, the p40 fragment, corresponding to the C-terminus of NaPi-2, was purified from renal brush-border membranes using non-reducing and then reducing column electrophoresis followed by enzymatic deglycosylation and SDS-PAGE. The N-terminal sequence obtained for this fragment, VEAIG, indicates that the formation of p45 and p40 arises from the cleavage of p70 between arginine-319 and valine-320. In order to determine the membrane topography of NaPi-2, brush-border membrane vesicles were digested with various proteases and the transporter-derived proteolytic peptides were subsequently identified by Western blotting using N- and C-terminal-directed antibodies. Our results lead us to propose an alternative topographical model in which p45 and p40 possess three transmembrane domains each and indicate that the processing site of p70 for the generation of p45 and p40 is localized in a large protein core facing the extracellular milieu. This localization of the cleavage site indicated that NaPi-2 could either be processed intracellularly by vesicular proteases or extracellularly by secretory proteases or by brush-border membrane ectoenzymes.  (+info)