Tobacco BY-2 cell-free extracts induce the recovery of microtubule nucleating activity of inactivated mammalian centrosomes. (25/10496)

The structure and the molecular composition of the microtubule-organizing centers in acentriolar higher plant cells remain unknown. We developed an in vitro complementation assay where tobacco BY-2 extracts can restore the microtubule-nucleating activity of urea-inactivated mammalian centrosomes. Our results provide first evidence that soluble microtubule-nucleating factors are present in the plant cytosolic fraction. The implication for microtubule nucleation in higher plants is discussed.  (+info)

The Opitz syndrome gene product, MID1, associates with microtubules. (26/10496)

Opitz syndrome (OS) is a genetically heterogeneous disorder characterized by defects of the ventral midline, including hypertelorism, cleft lip and palate, heart defects, and mental retardation. We recently identified the gene responsible for X-linked OS. The ubiquitously expressed gene product, MID1, is a member of the RING finger family. These proteins are characterized by an N-terminal tripartite protein-protein interaction domain and a conserved C terminus of unknown function. Unlike other RING finger proteins for which diverse cellular functions have been proposed, the function of MID1 is as yet undefined. By using the green fluorescent protein as a tag, we show here that MID1 is a microtubule-associated protein that influences microtubule dynamics in MID1-overexpressing cells. We confirm this observation by demonstrating a colocalization of MID1 and tubulin in subcellular fractions and the association of endogenous MID1 with microtubules after in vitro assembly. Furthermore, overexpressed MID1 proteins harboring mutations described in OS patients lack the capability to associate with microtubules, forming cytoplasmic clumps instead. These data give an idea of the possible molecular pathomechanism underlying the OS phenotype.  (+info)

The role of local actin instability in axon formation. (27/10496)

The role of localized instability of the actin network in specifying axonal fate was examined with the use of rat hippocampal neurons in culture. During normal neuronal development, actin dynamics and instability polarized to a single growth cone before axon formation. Consistently, global application of actin-depolymerizing drugs and of the Rho-signaling inactivator toxin B to nonpolarized cells produced neurons with multiple axons. Moreover, disruption of the actin network in one individual growth cone induced its neurite to become the axon. Thus, local instability of the actin network restricted to a single growth cone is a physiological signal specifying neuronal polarization.  (+info)

Spermatid translocation in the rat seminiferous epithelium: coupling membrane trafficking machinery to a junction plaque. (28/10496)

In this study, we demonstrate that specialized junction plaques that occur between Sertoli cells and spermatids in the rat testis support microtubule translocation in vitro. During spermatogenesis, Sertoli cells are attached to spermatids by specialized adhesion junctions termed ectoplasmic specializations (ESs). These structures consist of regions of the plasma membrane adherent to the spermatid head, a submembrane layer of tightly packed actin filaments, and an attached cistern of endoplasmic reticulum. It has been proposed that motor proteins on the endoplasmic reticulum interact with adjacent microtubules to translocate the junction plaques, and hence the attached spermatids, within the epithelium. If this hypothesis is true, then isolated junctions should support microtubule transport. To verify this prediction, we have mechanically isolated rat spermatids, together with their attached ESs, and tested them for their ability to transport microtubules in vitro. Most assays were done in the presence of 2 mg/ml testicular cytosol and at room temperature. ESs attached to spermatids supported microtubule translocation. In some cases in which motility events were detected, microtubules moved smoothly over the junction site. In others, the movement was slow but progressive, saltatory and "inch-worm-like." No motility was detected in the absence of exogenous ATP or in the presence of apyrase (an enzyme that catalyses the breakdown of ATP). Our results are consistent with the microtubule-based motility hypothesis of spermatid translocation.  (+info)

The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. (29/10496)

The translationally controlled protein P23 was discovered by the early induction of its rate of synthesis after mitogenic stimulation of mouse fibroblasts. P23 is expressed in almost all mammalian tissues and it is highly conserved between animals, plants and yeast. Based on its amino acid sequence, P23 cannot be attributed to any known protein family, and its cellular function remains to be elucidated. Here, we present evidence that P23 has properties of a tubulin binding protein that associates with microtubules in a cell cycle-dependent manner. (1) P23 is a cytoplasmic protein that occurs in complexes of 100-150 kDa, and part of P23 can be immunoprecipitated from HeLa cell extracts with anti-tubulin antibodies. (2) In immunolocalisation experiments we find P23 associated with microtubules during G1, S, G2 and early M phase of the cell cycle. At metaphase, P23 is also bound to the mitotic spindle, and it is detached from the spindle during metaphase-anaphase transition. (3) A GST-P23 fusion protein interacts with alpha- and beta-tubulin, and recombinant P23 binds to taxol-stabilised microtubules in vitro. The tubulin binding domain of P23 was identified by mutational analysis; it shows similarity to part of the tubulin binding domain of the microtubule-associated protein MAP-1B. (4) Overexpression of P23 results in cell growth retardation and in alterations of cell morphology. Moreover, elevation of P23 levels leads to microtubule rearrangements and to an increase in microtubule mass and stability.  (+info)

Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. (30/10496)

Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Delta cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Delta cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.  (+info)

Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. (31/10496)

We have used time-lapse digital imaging microscopy to examine cytoplasmic astral microtubules (Mts) and spindle dynamics during the mating pathway in budding yeast Saccharomyces cerevisiae. Mating begins when two cells of opposite mating type come into proximity. The cells arrest in the G1 phase of the cell cycle and grow a projection towards one another forming a shmoo projection. Imaging of microtubule dynamics with green fluorescent protein (GFP) fusions to dynein or tubulin revealed that the nucleus and spindle pole body (SPB) became oriented and tethered to the shmoo tip by a Mt-dependent search and capture mechanism. Dynamically unstable astral Mts were captured at the shmoo tip forming a bundle of three or four astral Mts. This bundle changed length as the tethered nucleus and SPB oscillated toward and away from the shmoo tip at growth and shortening velocities typical of free plus end astral Mts (approximately 0.5 micrometer/min). Fluorescent fiduciary marks in Mt bundles showed that Mt growth and shortening occurred primarily at the shmoo tip, not the SPB. This indicates that Mt plus end assembly/disassembly was coupled to pushing and pulling of the nucleus. Upon cell fusion, a fluorescent bar of Mts was formed between the two shmoo tip bundles, which slowly shortened (0.23 +/- 0.07 micrometer/min) as the two nuclei and their SPBs came together and fused (karyogamy). Bud emergence occurred adjacent to the fused SPB approximately 30 min after SPB fusion. During the first mitosis, the SPBs separated as the spindle elongated at a constant velocity (0.75 micrometer/min) into the zygotic bud. There was no indication of a temporal delay at the 2-micrometer stage of spindle morphogenesis or a lag in Mt nucleation by replicated SPBs as occurs in vegetative mitosis implying a lack of normal checkpoints. Thus, the shmoo tip appears to be a new model system for studying Mt plus end dynamic attachments and much like higher eukaryotes, the first mitosis after haploid cell fusion in budding yeast may forgo cell cycle checkpoints present in vegetative mitosis.  (+info)

Recombinant major vault protein is targeted to neuritic tips of PC12 cells. (32/10496)

The major vault protein (MVP) is the predominant constituent of ubiquitous, evolutionarily conserved large cytoplasmic ribonucleoprotein particles of unknown function. Vaults are multimeric protein complexes with several copies of an untranslated RNA. Double labeling employing laser-assisted confocal microscopy and indirect immunofluorescence demonstrates partial colocalization of vaults with cytoskeletal elements in Chinese hamster ovary (CHO) and nerve growth factor (NGF)-treated neuronlike PC12 cells. Transfection of CHO and PC12 cells with a cDNA encoding the rat major vault protein containing a vesicular stomatitis virus glycoprotein epitope tag demonstrates that the recombinant protein is sorted into vault particles and targeted like endogenous MVPs. In neuritic extensions of differentiated PC12 cells, there is an almost complete overlap of the distribution of microtubules and vaults. A pronounced colocalization of vaults with filamentous actin can be seen in the tips of neurites. Moreover, in NGF-treated PC12 cells the location of vaults partially coincides with vesicular markers. Within the terminal tips of neurites vaults are located near secretory organelles. Our observations suggest that the vault particles are transported along cytoskeletal-based cellular tracks.  (+info)