5'-Nucleotidase activity of mouse peritoneal macrophages. II. Cellular distribution and effects of endocytosis. (1/3739)

The diazonium salt of sulfanilic acid (DASA) can inactivate about 80% of the total 5'-nucleotidase of viable macrophages. The remaining 20% can be inactivated if the cells are first lysed in detergent, and presumably represents an intracellular pool of 5'-nucleotidase. The bulk of this pool may represent cytoplasmic vesicles derived from plasma membrane by endocytosis. This internal compartment is expanded up to threefold immediately after the cells have ingested a large latex load. This is consistent with previous observations on the internalization of 5'-nucleotidase in latex phagosomes. In latex-filled cells this intracellular pool of enzyme is inactivated over a few hours, and the cells then slowly increase their enzyme activity to nearly normal levels. However, 24 h after latex ingestion the metabolism of 5'-nucleotidase in these recovered cells is abnormal, as the rate of enzyme degradation is about twice the normal rate, and the DASA-insensitive enzyme pool in these cells is strikingly diminished. This may reflect effects of the accumulated indigestible particles on the fate of incoming pinocytic vesicles or on newly synthesized plasma membrane precursor. Another endocytic stimulus, concanavalin A, also reduces the total cell 5'-nucleotidase activity. This effect, which is time and temperature dependent, can be prevented by the competitive sugar alpha-methyl mannose. The concanavalin A inhibition can be reversed in the absence of new protein synthesis or in cells cultivated in serum-free conditions. It is not known whether the effect of concanavalin A on 5'-nucleotidase depends upon the interiorizaiton of plasma membrane or is strictly associated with events at the cell surface.  (+info)

In vitro and in vivo activities of NS-718, a new lipid nanosphere incorporating amphotericin B, against Aspergillus fumigatus. (2/3739)

We evaluated the in vitro and in vivo potencies of a new lipid nanosphere that incorporates amphotericin B (AmB), NS-718, against Aspergillus fumigatus. The in vitro activity of NS-718 (the MIC at which 90% of strains are inhibited [MIC90], 0.25 microgram/ml) against 18 isolates of A. fumigatus was similar to that of deoxycholate AmB (D-AmB; Fungizone; MIC90, 0.25 microgram/ml), but NS-718 was more potent than liposomal AmB (L-AmB; AmBi-some; MIC90, 1.0 microgram/ml). The in vivo efficacy of NS-718 in a rat model of invasive pulmonary aspergillosis was compared with those of D-AmB and L-AmB. A low dose (1 mg/kg of body weight) of L-AmB was ineffective (survival rate, 0%), although equivalent doses of D-AmB and NS-718 were more effective (survival rate, 17%). However, a higher dose of NS-718 (3 mg/kg) was more effective (survival rate, 100%) than equivalent doses of D-AmB and L-AmB (survival rate, 0%). To explain these differences, pharmacokinetic studies showed higher concentrations of AmB in the plasma of rats treated with NS-718 than in the plasma of those treated with D-AmB. Our results suggest that NS-718, a new preparation of AmB, is a promising antifungal agent with activity against pulmonary aspergillosis.  (+info)

Quantitative study of polymer conformation and dynamics by single-particle tracking. (3/3739)

We present a new method for analyzing the dynamics of conformational fluctuations of individual flexible polymer molecules. In single-particle tracking (SPT), one end of the polymer molecule is tethered to an immobile substratum. A microsphere attached to the other end serves as an optical marker. The conformational fluctuations of the polymer molecule can be measured by optical microscopy via the motion of the microsphere. The bead-and-spring theory for polymer dynamics is further developed to account for the microsphere, and together the measurement and the theory yield quantitative information about molecular conformations and dynamics under nonperturbing conditions. Applying the method to measurements carried out on DNA molecules provides information complementary to recent studies of single DNA molecules under extensional force. Combining high precision measurements with the theoretical analysis presented here creates a powerful tool for studying conformational dynamics of biological and synthetic macromolecules at the single-molecule level.  (+info)

Adhesion energy of receptor-mediated interaction measured by elastic deformation. (4/3739)

We investigated the role of receptor binding affinity in surface adhesion. A sensitive technique was developed to measure the surface energy of receptor-mediated adhesion. The experimental system involved a functionalized elastic agarose bead resting on a functionalized glass coverslip. Attractive intersurface forces pulled the two surfaces together, deforming the bead to produce an enlarged contact area. The Johnson-Kendall-Roberts (JKR) model was used to relate the surface energy of the interaction to the elasticity of the bead and the area of contact. The surface energies for different combinations of modified surfaces in solution were obtained from reflection interference contrast microscopy (RICM) measurements of the contact area formed by the bead and the coverslip. Studies with surfaces functionalized with ligand-receptor pairs showed that the relationship between surface energy and the association constant of the ligand binding has two regimes. At low binding affinity, surface energy increased linearly with the association constant, while surface energy increased logarithmically with the association constant in the high affinity regime.  (+info)

A region of the Yersinia pseudotuberculosis invasin protein enhances integrin-mediated uptake into mammalian cells and promotes self-association. (5/3739)

Invasin allows efficient entry into mammalian cells by Yersinia pseudotuberculosis. It has been shown that the C-terminal 192 amino acids of invasin are essential for binding of beta1 integrin receptors and subsequent uptake. By analyzing the internalization of latex beads coated with invasin derivatives, an additional domain of invasin was shown to be required for efficient bacterial internalization. A monomeric derivative encompassing the C-terminal 197 amino acids was inefficient at promoting entry of latex beads, whereas dimerization of this derivative by antibody significantly increased uptake. By using the DNA-binding domain of lambda repressor as a reporter for invasin self-interaction, we have demonstrated that a region of the invasin protein located N-terminal to the cell adhesion domain of invasin is able to self-associate. Chemical cross-linking studies of purified and surface-exposed invasin proteins, and the dominant-interfering effect of a non-functional invasin derivative are consistent with the presence of a self-association domain that is located within the region of invasin that enhances bacterial uptake. We conclude that interaction of homomultimeric invasin with multiple integrins establishes tight adherence and receptor clustering, thus providing a signal for internalization.  (+info)

Effect of acute normovolemic hemodilution on distribution of blood flow and tissue oxygenation in dog skeletal muscle. (6/3739)

Acute normovolemic hemodilution (ANH) is efficient in reducing allogenic blood transfusion needs during elective surgery. Tissue oxygenation is maintained by increased cardiac output and oxygen extraction and, presumably, a more homogeneous tissue perfusion. The aim of this study was to investigate blood flow distribution and oxygenation of skeletal muscle. ANH from hematocrit of 36 +/- 3 to 20 +/- 1% was performed in 22 splenectomized, anesthetized beagles (17 analyzed) ventilated with room air. Normovolemia was confirmed by measurement of blood volume. Distribution of perfusion within skeletal muscle was determined by using radioactive microspheres. Tissue oxygen partial pressure was assessed with a polarographic platinum surface electrode. Cardiac index (3.69 +/- 0.79 vs. 4.79 +/- 0.73 l. min-1. m-2) and muscle perfusion (4.07 +/- 0.44 vs. 5.18 +/- 0.36 ml. 100 g-1. min-1) were increased at hematocrit of 20%. Oxygen delivery to skeletal muscle was reduced to 74% of baseline values (0.64 +/- 0.06 vs. 0.48 +/- 0.03 ml O2. 100 g-1. min-1). Nevertheless, tissue PO2 was preserved (27.4 +/- 1.3 vs. 29.9 +/- 1. 4 Torr). Heterogeneity of muscle perfusion (relative dispersion) was reduced after ANH (20.0 +/- 2.2 vs. 13.9 +/- 1.5%). We conclude that a more homogeneous distribution of perfusion is one mechanism for the preservation of tissue oxygenation after moderate ANH, despite reduced oxygen delivery.  (+info)

Estimation of rat muscle blood flow by microdialysis probes perfused with ethanol, [14C]ethanol, and 3H2O. (7/3739)

We used the perfused rat hindquarter to evaluate whether the microdialysis ethanol technique can be used to qualitatively estimate nutritive skeletal muscle blood flow. Four microdialysis probes were inserted in different hindlimb muscles in each of 16 rats. Hindquarters were perfused at blood flow rates ranging from 0 to 21 ml. 100 g-1. min-1. The microdialysis probes were perfused at 2 microliter/min with perfusate containing ethanol, [14C]ethanol, and 3H2O. Within and between experiments outflow-to-inflow ratios (o/i) generally varied inversely with blood flow. When a low flow or no flow was maintained in hindquarters, o/i ratios first increased with time (for at least 60 min) and then leveled off. The long time constant impaired detection of rapid oscillations in blood flow, especially at low blood flow rates. Contractions per se apparently decreased o/i ratios independent of blood flow. Ethanol and [14C]ethanol o/i ratios did not differ. 3H2O o/i paralleled ethanol and [14C]ethanol o/i ratios but it was significantly lower. In conclusion, differences in skeletal muscle blood flow can be detected by the microdialysis technique. However, the slow changes in o/i, in particular at low blood flow rates, limit the usefulness of the technique for measuring dynamic changes in blood flow; caution must also be exerted during muscle contractions. 3H2O and [14C]ethanol are good alternatives to ethanol in the determination of blood flow by microdialysis.  (+info)

DNA hybridization on microparticles: determining capture-probe density and equilibrium dissociation constants. (8/3739)

Many DNA-probe assays utilize oligonucleotide-coated microparticles for capture of complementary nucleic acids from solution. During development of these assays, as well as in other particle-based nucleic acid applications, it is useful to know both the amount of duplex formation expected under various experimental conditions and the coating density of the capture oligonucleotide on the particle surface. We examined the simplest form of a DNA-probe microparticle assay: hybridization of a particle-bound capture oligonucleotide to its solution-phase complement. Fluorescein-labeled solution-phase oligonucleotide was hybridized to varying amounts of particles, and the amount of labeled oligonucleotide remaining in solution at equilibrium was measured. We present a simple two-state, all-or-none model for bimolecular hybridization of non-self-complementary sequences that can be used to calculate the equilibrium dissociation constant ( Kd ) from hybridization data. With experimental conditions where both the Kd value and the concentration of capture probe in the reaction are small relative to the concentration of labeled complementary oligonucleotide in the reaction, density of the capture probe on the particle's surface can also be determined. Kd values for particle-based hybridization were different from those obtained from solution-phase thermodynamic parameters. At higher temperatures, hybridization on particles was more efficient than hybridization in solution.  (+info)