Astrocyte-specific expression of tyrosine hydroxylase after intracerebral gene transfer induces behavioral recovery in experimental parkinsonism. (9/23915)

Parkinson's disease is a neurodegenerative disorder characterized by the depletion of dopamine in the caudate putamen. Dopamine replacement with levodopa, a precursor of the neurotransmitter, is presently the most common treatment for this disease. However, in an effort to obtain better therapeutic results, tissue or cells that synthesize catecholamines have been grafted into experimental animals and human patients. In this paper, we present a novel technique to express tyrosine hydroxylase (TH) in the host's own astrocytes. This procedure uses a transgene in which the expression of a TH cDNA is under the control of a glial fibrillary acidic protein (GFAP) promoter, which confers astrocyte-specific expression and also increases its activity in response to brain injury. The method was tested in a rat model of Parkinson's disease produced by lesioning the striatum with 6-hydroxydopamine. Following microinjection of the transgene into the denervated striatum as a DNA-liposome complex, expression of the transgene was detected by RT-PCR and TH protein was observed specifically in astrocytes by using double-labeling immunofluorescence for GFAP and TH coupled with laser confocal microscopy. Efficacy was demonstrated by significant behavioral recovery, as assessed by a decrease in the pharmacologically induced turning behavior generated by the unilateral denervation of the rat striatum. These results suggest this is a valuable technique to express molecules of therapeutic interest in the brain.  (+info)

A processive single-headed motor: kinesin superfamily protein KIF1A. (10/23915)

A single kinesin molecule can move "processively" along a microtubule for more than 1 micrometer before detaching from it. The prevailing explanation for this processive movement is the "walking model," which envisions that each of two motor domains (heads) of the kinesin molecule binds coordinately to the microtubule. This implies that each kinesin molecule must have two heads to "walk" and that a single-headed kinesin could not move processively. Here, a motor-domain construct of KIF1A, a single-headed kinesin superfamily protein, was shown to move processively along the microtubule for more than 1 micrometer. The movement along the microtubules was stochastic and fitted a biased Brownian-movement model.  (+info)

Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. (11/23915)

Molecular cloning studies have revealed the existence of a large family of voltage-gated K+ channel genes expressed in mammalian brain. This molecular diversity underlies the vast repertoire of neuronal K+ channels that regulate action potential conduction and neurotransmitter release and that are essential to the control of neuronal excitability. However, the specific contribution of individual K+ channel gene products to these neuronal K+ currents is poorly understood. We have shown previously, using an antibody, "KC, " specific for the Kv2.1 K+ channel alpha-subunit, the high-level expression of Kv2.1 protein in hippocampal neurons in situ and in culture. Here we show that KC is a potent blocker of K+ currents expressed in cells transfected with the Kv2.1 cDNA, but not of currents expressed in cells transfected with other highly related K+ channel alpha-subunit cDNAs. KC also blocks the majority of the slowly inactivating outward current in cultured hippocampal neurons, although antibodies to two other K+ channel alpha-subunits known to be expressed in these cells did not exhibit blocking effects. In all cases the blocking effects of KC were eliminated by previous incubation with a recombinant fusion protein containing the KC antigenic sequence. Together these studies show that Kv2.1, which is expressed at high levels in most mammalian central neurons, is a major contributor to the delayed rectifier K+ current in hippocampal neurons and that the KC antibody is a powerful tool for the elucidation of the role of the Kv2.1 K+ channel in regulating neuronal excitability.  (+info)

Association of a myosin immunoanalogue with cell envelopes of Aspergillus fumigatus conidia and its participation in swelling and germination. (12/23915)

A myosin immunoanalogue was identified in conidia of Aspergillus fumigatus by Western blotting, indirect immunofluorescence assay, and gold immunoelectron microscopy with two different antimyosin antibodies. The distribution pattern of this protein was followed during the early stages of germination. A single 180-kDa polypeptide, detected predominantly in a cell envelope extract, was found to cross-react with monoclonal and polyclonal antibodies raised against vertebrate muscle myosin. Immunoelectron microscopy permitted precise localization of this polypeptide, indicating that myosin analogue was mainly distributed along the plasma membrane of resting and swollen conidia. In germinating conidia, indirect immunofluorescence microscopy revealed myosin analogue at the periphery of germ tubes, whereas actin appeared as dispersed punctate structures in the cytoplasm that were more concentrated at the site of germ tube emergence. A myosin ATPase inhibitor, butanedione monoxime, greatly reduced swelling and blocked germination. In contrast, when conidia were treated with cytochalasin B, an inhibitor of actin polymerization, swelling was not affected and germination was only partially reduced. Butanedione monoxime-treated conidia showed accumulation of cytoplasmic vesicles and did not achieve cell wall reorganization, unlike swollen conidia. Collectively, these results suggest an essential role for this myosin analogue in the deposition of cell wall components during germination of A. fumigatus conidia and therefore in host tissue colonization.  (+info)

Enhanced adhesion of Pasteurella multocida to cultured turkey peripheral blood monocytes. (13/23915)

Capsular hyaluronic acid (HA) mediates adhesion of serogroup A strains of Pasteurella multocida to elicited turkey air sac macrophages (TASM). In contrast, freshly isolated turkey peripheral blood monocytes (TPBM) do not bind serogroup A strains. Following culture of TPBM for 6 days in chamber slides, adhesion of the bacteria to TPBM increased gradually. Incubation in chamber slides coated with entactin-collagen IV-laminin (ECL) attachment matrix or exposure to phorbol myristate acetate (PMA) further enhanced the adhesion of P. multocida to TPBM. Addition of HA, but not Arg-Gly-Asp peptide, to TPBM culture inhibited bacterial adherence similarly to the inhibition previously reported for TASM. Exposure of TPBM to monoclonal antibody directed against HA-binding cell surface proteoglycan (CD44) decreased binding of P. multocida. Collectively, these findings indicate that P. multocida adhesion to TPBM is mediated by capsular HA and can be increased by culture on ECL attachment matrix or PMA exposure. Additionally, the findings suggest that the capsular mucopolysaccharide of serogroup A strains of P. multocida recognizes an isoform of CD44 expressed on cultured TPBM.  (+info)

Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. (14/23915)

Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defective lysosome-related organelles. Here, we report the identification of two HPS patients with mutations in the beta 3A subunit of the heterotetrameric AP-3 complex. The patients' fibroblasts exhibit drastically reduced levels of AP-3 due to enhanced degradation of mutant beta 3A. The AP-3 deficiency results in increased surface expression of the lysosomal membrane proteins CD63, lamp-1, and lamp-2, but not of nonlysosomal proteins. These differential effects are consistent with the preferential interaction of the AP-3 mu 3A subunit with tyrosine-based signals involved in lysosomal targeting. Our results suggest that AP-3 functions in protein sorting to lysosomes and provide an example of a human disease in which altered trafficking of integral membrane proteins is due to mutations in a component of the sorting machinery.  (+info)

Maintenance of motility in mouse sperm permeabilized with streptolysin O. (15/23915)

One approach to studying the mechanisms governing sperm motility is to permeabilize sperm and examine the regulation of motility by manipulating the intracellular milieu of the cell. The most common method of sperm permeabilization, detergent treatment, has the disadvantage that the membranes and many proteins are extracted from the cell. To avoid this problem, we have developed a method that uses streptolysin O to create stable pores within the plasma membrane while leaving internal membranes intact. Sperm were permeabilized, preincubated, and then treated with 0.6 U/ml of streptolysin O. Permeabilization was assessed by fluorescent dye technologies and endogenous protein phosphorylation using exogenously added [gamma-32P]ATP. Streptolysin O-induced permeabilization rendered the sperm immotile, and the effect was Ca2+-dependent. When the cells were treated simultaneously with a medium containing ATP, streptolysin O-treated sperm maintained flagellar movement. These results demonstrate that the streptolysin O permeabilization model system is a useful experimental method for studying the mechanisms that regulate sperm motility since it allows the flagellar apparatus to be exposed to various exogenously added molecules.  (+info)

The dually acylated NH2-terminal domain of gi1alpha is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated g-protein alpha subunits in vivo. (16/23915)

Here we investigate the molecular mechanisms that govern the targeting of G-protein alpha subunits to the plasma membrane. For this purpose, we used Gi1alpha as a model dually acylated G-protein. We fused full-length Gi1alpha or its extreme NH2-terminal domain (residues 1-32 or 1-122) to green fluorescent protein (GFP) and analyzed the subcellular localization of these fusion proteins. We show that the first 32 amino acids of Gi1alpha are sufficient to target GFP to caveolin-enriched domains of the plasma membrane in vivo, as demonstrated by co-fractionation and co-immunoprecipitation with caveolin-1. Interestingly, when dual acylation of this 32-amino acid domain was blocked by specific point mutations (G2A or C3S), the resulting GFP fusion proteins were localized to the cytoplasm and excluded from caveolin-rich regions. The myristoylated but nonpalmitoylated (C3S) chimera only partially partitioned into caveolin-containing fractions. However, both nonacylated GFP fusions (G2A and C3S) no longer co-immunoprecipitated with caveolin-1. Taken together, these results indicate that lipid modification of the NH2-terminal of Gi1alpha is essential for targeting to its correct destination and interaction with caveolin-1. Also, a caveolin-1 mutant lacking all three palmitoylation sites (C133S, C143S, and C156S) was unable to co-immunoprecipitate these dually acylated GFP-G-protein fusions. Thus, dual acylation of the NH2-terminal domain of Gi1alpha and palmitoylation of caveolin-1 are both required to stabilize and perhaps regulate this reciprocal interaction at the plasma membrane in vivo. Our results provide the first demonstration of a functional role for caveolin-1 palmitoylation in its interaction with signaling molecules.  (+info)