Met-HGF/SF mediates growth arrest and differentiation in T47D breast cancer cells. (41/23915)

Hepatocyte growth factor/scatter factor (HGF/SF) is a pluripotent growth factor that exerts mitogenic, motogenic, and morphogenic effects. To elucidate the cellular mechanisms underlying the pluripotent function of this growth factor, T47D human breast cancer cells were transfected with human hgf/sf. The hgf/sf-positive clones exhibited different levels of biologically functional HGF/SF expression and up-regulation of endogenous Met (HGF/SF receptor) expression. In addition, a constitutive phosphorylation of the receptor on tyrosine residues was detected, establishing a Met-HGF/SF autocrine loop. The autocrine activation of Met caused marked inhibition in cell growth accompanied by cell accumulation at G0/G1. These cells underwent terminal cell differentiation as determined by morphological changes, synthesis of milk proteins such as beta-casein and alpha-lactalbumin, and production of lipid vesicles. Our results demonstrate that Met-HGF/SF, an oncogenic signal transduction pathway, is capable of inducing growth arrest and differentiation in certain breast cancer cells and, thus, may have potential as therapeutic and/or prognostic tools in breast cancer treatment.  (+info)

Sec24 proteins and sorting at the endoplasmic reticulum. (42/23915)

COPII proteins are necessary to generate secretory vesicles at the endoplasmic reticulum. In yeast, the Sec24p protein is the only COPII component in which two close orthologues have been identified. By using gene knock-out in yeast, we found that the absence of one of these Sec24 orthologues resulted in a selective secretion defect for a subset of proteins released into the medium. Data base searches revealed the existence of an entire family of Sec24-related proteins in humans, worms, flies, and plants. We identified and cloned two new human cDNAs encoding proteins homologous to yeast Sec24p, in addition to two human cDNAs already present within the data bases. The entire Sec24 family identified to date is characterized by clusters of highly conserved residues within the 2/3 carboxyl-terminal domain of all the proteins and a divergent amino terminus domain. Human (h) Sec24 orthologues co-immunoprecipitate with hSec23Ap and migrate as a complex by size exclusion chromatography. Immunofluorescence microscopy confirmed that these proteins co-localize with hSec23p and hSec13p. Together, our data suggest that in addition to its role in the shaping up of the vesicle, the Sec23-24p complex may be implicated in cargo selection and concentration.  (+info)

Bacteroides fragilis toxin 2 damages human colonic mucosa in vitro. (43/23915)

BACKGROUND: Strains of Bacteroides fragilis producing a 20 kDa protein toxin (B fragilis toxin (BFT) or fragilysin) are associated with diarrhoea in animals and humans. Although in vitro results indicate that BFT damages intestinal epithelial cells in culture, the effects of BFT on native human colon are not known. AIMS: To examine the electrophysiological and morphological effects of purified BFT-2 on human colonic mucosa in vitro. METHODS: For resistance (R) measurements, colonic mucosa mounted in Ussing chambers was exposed to luminal or serosal BFT-2 (1.25-10 nM) and after four hours morphological damage was measured on haematoxylin and eosin stained sections using morphometry. F actin distribution was assessed using confocal microscopy. RESULTS: Serosal BFT-2 for four hours was four-, two-, seven-, and threefold more potent than luminal BFT-2 in decreasing resistance, increasing epithelial 3H-mannitol permeability, and damaging crypt and surface colonocytes, respectively (p<0.05). Confocal microscopy showed reduced colonocyte F actin staining intensity after exposure to BFT-2. CONCLUSIONS: BFT-2 increases human colonic permeability and damages human colonic epithelial cells in vitro. These effects may be important in the development of diarrhoea and intestinal inflammation caused by B fragilis in vivo.  (+info)

Long-term stability of large insert genomic DNA episomal shuttle vectors in human cells. (44/23915)

We have constructed an episomal shuttle vector which can transfer large (>100 kb) human genomic DNA inserts back and forth between bacteria and human cells and which can be tracked in rapidly dividing human cells using a live cell assay. The vector (p5170) is based on the F factor-derived bacterial artificial chromosome cloning vector used in Escherichia coli, with the addition of the family of repeats element from the Epstein-Barr virus (EBV) latent origin of replication. This element provides nuclear retention in cells expressing the EBV protein EBNA-1. We have subcloned a series of genomic DNA inserts into p5170 and transfected the constructs into an EBNA-1(+) human cell line. Episomal mitotic stability was quantitatively analysed using flow cytometry. The episomes were also tracked by time course photography of expanding colonies. A 117 kb episome was retained at approximately 2 copies/cell and could be shuttled unrearranged from the human cells into bacterial cells after 15 months of continuous cell growth. Furthermore, the episome could still be rescued from human cells cultured in the absence of selection for 198 days. Such a trackable E.coli /human cell line shuttle vector system capable of carrying >100 kb of genomic DNA in human cells could prove a valuable tool in gene expression studies.  (+info)

Chemical transformations in individual ultrasmall biomimetic containers. (45/23915)

Individual phospholipid vesicles, 1 to 5 micrometers in diameter, containing a single reagent or a complete reaction system, were immobilized with an infrared laser optical trap or by adhesion to modified borosilicate glass surfaces. Chemical transformations were initiated either by electroporation or by electrofusion, in each case through application of a short (10-microsecond), intense (20 to 50 kilovolts per centimeter) electric pulse delivered across ultramicroelectrodes. Product formation was monitored by far-field laser fluorescence microscopy. The ultrasmall characteristic of this reaction volume led to rapid diffusional mixing that permits the study of fast chemical kinetics. This technique is also well suited for the study of reaction dynamics of biological molecules within lipid-enclosed nanoenvironments that mimic cell membranes.  (+info)

N-dansyl-S-nitrosohomocysteine a fluorescent probe for intracellular thiols and S-nitrosothiols. (46/23915)

The fluorescence emission spectrum of N-dansyl-S-nitrosohomocysteine was enhanced approximately 8-fold upon removal of the NO group either by photolysis or by transnitrosation with free thiols like glutathione. The fluorescence enhancement was reversible in that it could be quenched in the presence of excess S-nitrosoglutathione. Attempts were then made to utilize N-dansyl-S-nitrosohomocysteine as an intracellular probe of thiols/S-nitrosothiols. Fluorescence microscopy of fibroblasts in culture indicated that intracellular N-dansyl-S-nitrosohomocysteine levels reached a maximum within 5 min. N-Dansyl-S-nitrosohomocysteine fluorescence was directly proportional to intracellular GSH levels, directly determined with HPLC. N-Dansyl-S-nitrosohomocysteine preloaded cells were also sensitive to S-nitrosoglutathione uptake as the intracellular fluorescence decreased as a function of time upon exposure to extracellular S-nitrosoglutathione.  (+info)

TWEAK induces angiogenesis and proliferation of endothelial cells. (47/23915)

TWEAK is a recently described member of the Tumor Necrosis Factor (TNF) ligand family whose transcripts are present in a wide variety of human tissues (Chicheportiche, Y., Bourdon, P. R., Xu, H., Hsu Y. M., Scott, H., Hession, C., Garcia, I., and Browning, J. L. (1997) J. Biol. Chem. 272, 32401-32410). TWEAK is a weak inducer of apoptosis in transformed cells when administered with interferon-gamma or cycloheximide (Chicheportiche, Y., Bourdon, P. R., Xu, H., Hsu Y. M., Scott, H., Hession, C., Garcia, I., and Browning, J. L. (1997) J. Biol. Chem. 272, 32401-32410; Masters, S. A., Sheridan, J. P., Pitti, R. M., Brush, A. G., and Ashkenazi, A. (1998) Curr. Biol. 8, 525-528) and also promotes IL-8 secretion in cultured cells. We report here that picomolar concentrations of recombinant soluble TWEAK induce proliferation in a variety of normal human endothelial cells and in aortic smooth muscle cells and reduce culture requirements for serum and growth factors. Blocking antibodies to Vascular Endothelial Growth Factor (VEGF) do not significantly inhibit TWEAK-induced proliferation, indicating that TWEAK does not function indirectly through up-regulation of VEGF. Pellets containing TWEAK induce a strong angiogenic response when implanted in rat corneas, suggesting a role for TWEAK in vasculature formation in vivo.  (+info)

Scavenger receptor BI mediates the selective uptake of oxidized cholesterol esters by rat liver. (48/23915)

High density lipoprotein (HDL) can protect low density lipoprotein (LDL) against oxidation. Oxidized cholesterol esters from LDL can be transferred to HDL and efficiently and selectively removed from the blood circulation by the liver and adrenal in vivo. In the present study, we investigated whether scavenger receptor BI (SR-BI) is responsible for this process. At 30 min after injection, the selective uptake of oxidized cholesterol esters from HDL for liver and adrenal was 2.3- and 2.6-fold higher, respectively, than for native cholesterol esters, whereas other tissues showed no significant difference. The selective uptake of oxidized cholesterol esters from HDL by isolated liver parenchymal cells could be blocked for 75% by oxidized LDL and for 50% by phosphatidylserine liposomes, both of which are known substrates of SR-BI. In vivo uptake of oxidized cholesterol esters from HDL by parenchymal cells decreased by 64 and 81% when rats were treated with estradiol and a high cholesterol diet, respectively, whereas Kupffer cells showed 660 and 475% increases, respectively. These contrasting changes in oxidized cholesterol ester uptake were accompanied by similar contrasting changes in SR-BI expression of parenchymal and Kupffer cells. The rates of SR-BI-mediated selective uptake of oxidized and native cholesterol esters were analyzed in SR-BI-transfected Chinese hamster ovary cells. SR-BI-mediated selective uptake was 3.4-fold higher for oxidized than for native cholesterol esters (30 min of incubation). It is concluded that in addition to the selective uptake of native cholesterol esters, SR-BI is responsible for the highly efficient selective uptake of oxidized cholesterol esters from HDL and thus forms an essential mediator in the HDL-associated protection system for atherogenic oxidized cholesterol esters.  (+info)