Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. (41/696)

This study characterizes the morphologic features and the endogenous fluorescence in the stratified squamous epithelia of the 7,12-dimethylbenz(a)anthracene-treated hamster cheek pouch model of carcinogenesis using multiphoton laser scanning microscopy (MPLSM). MPLSM allows high-resolution, three-dimensional image data to be collected deeper within thick tissue samples with reduced phototoxicity compared with single-photon imaging. Three-dimensional image stacks of normal (n = 13), precancerous (dysplasia, n = 12; carcinoma in situ, n = 9) and cancerous tissue [nonpapillary squamous cell carcinoma (SCC), n = 10, and papillary SCC, n = 7] sites in the hamster cheek pouch were collected in viable, unsectioned tissue biopsies at a two-photon excitation wavelength of 780 nm. Five features were quantified from the MPLSM images. These included nuclear density versus depth, keratin layer thickness, epithelial thickness, and the fluorescence per voxel in the keratin and epithelial layers. Statistically significant differences in all five features were found between normal and both precancerous and cancerous tissues. The only exception to this was a lack of statistically significant differences in the keratin fluorescence between normal tissues and papillary SCCs. Statistically significant differences were also observed in the epithelial thickness of dysplasia and carcinoma in situ, and in the keratin layer thickness of dysplasia and SCCs (both nonpapillary and papillary). This work clearly shows that three-dimensional images from MPLSM of endogenous tissue fluorescence can effectively distinguish between normal, precancerous, and cancerous epithelial tissues. This study provides the groundwork for further exploration into the application of multiphoton fluorescence endoscopy in a clinical setting.  (+info)

Characterizing extravascular fluid transport of macromolecules in the tumor interstitium by magnetic resonance imaging. (42/696)

Noninvasive imaging techniques to image and characterize delivery and transport of macromolecules through the extracellular matrix (ECM) and supporting stroma of a tumor are necessary to develop treatments that alter the porosity and integrity of the ECM for improved delivery of therapeutic agents and to understand factors which influence and control delivery, movement, and clearance of macromolecules. In this study, a noninvasive imaging technique was developed to characterize the delivery as well as interstitial transport of a macromolecular agent, albumin-GdDTPA, in the MCF-7 human breast cancer model in vivo, using magnetic resonance imaging. The transport parameters derived included vascular volume, permeability surface area product, macromolecular fluid exudate volume, and drainage and pooling rates. Immunohistochemical staining for the lymphatic endothelial marker LYVE-1 was done to determine the contribution of lymphatics to the macromolecular drainage. Distinct pooling and draining regions were detected in the tumors using magnetic resonance imaging. A few lymphatic vessels positively stained for LYVE-1 were also detected although these were primarily collapsed and tenuous suggesting that lymphatic drainage played a minimal role, and that the bulk of drainage was due to convective transport through the ECM in this tumor model.  (+info)

Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. (43/696)

A solid tumor is an organ composed of cancer and host cells embedded in an extracellular matrix and nourished by blood vessels. A prerequisite to understanding tumor pathophysiology is the ability to distinguish and monitor each component in dynamic studies. Standard fluorophores hamper simultaneous intravital imaging of these components. Here, we used multiphoton microscopy techniques and transgenic mice that expressed green fluorescent protein, and combined them with the use of quantum dot preparations. We show that these fluorescent semiconductor nanocrystals can be customized to concurrently image and differentiate tumor vessels from both the perivascular cells and the matrix. Moreover, we used them to measure the ability of particles of different sizes to access the tumor. Finally, we successfully monitored the recruitment of quantum dot-labeled bone marrow-derived precursor cells to the tumor vasculature. These examples show the versatility of quantum dots for studying tumor pathophysiology and creating avenues for treatment.  (+info)

Multiphoton imaging of renal tissues in vitro. (44/696)

The highly inhomogeneous and light-scattering structure of living renal tissue makes the application of conventional imaging techniques more difficult compared with other parenchymal organs. On the other hand, key physiological processes of the kidney, such as regulation of glomerular filtration, hemodynamics, concentration, and dilution, involve complex interactions between multiple cell types and otherwise inaccessible structures that necessitate visual approaches. An ideal solution is multiphoton excitation fluorescence microscopy, a state-of-the-art imaging technique superior for deep optical sectioning of living tissue samples. Here, we review the basics and advantages of multiphoton microscopy and provide examples for its application in renal physiology using dissected cortical and medullary tissues in vitro. In combination with microperfusion techniques, the major functions of the juxtaglomerular apparatus, tubuloglomerular feedback and renin release, can be studied with high spatial and temporal resolution. Salt-dependent changes in macula densa cell volume, vasoconstriction of the afferent arteriole, and activity of an intraglomerular precapillary sphincter composed of renin granular cells are visualized in real time. Release and tissue activity of renin can be studied on the individual granule level. Imaging of the living inner medulla shows how interstitial cells interconnect cells of the vasa recta, loop of Henle, and collecting duct. In summary, multiphoton microscopy is an exciting new optical sectioning technique that has great potential for numerous future developments and is ideal for applications that require deep optical sectioning of living tissue samples.  (+info)

Intravital multiphoton microscopy of dynamic renal processes. (45/696)

Recent advances in microscopy and optics, computer sciences, and the available fluorophores used to label molecules of interest have empowered investigators to utilize intravital two-photon microscopy to study the dynamic events within the functioning kidney. This emerging technique enables investigators to follow functional and structural alterations with subcellular resolution within the same field of view over seconds to weeks. This approach invigorates the validity of data and facilitates analysis and interpretation as trends are more readily determined when one is more closely monitoring indicative physiological parameters. Therefore, in this review we emphasize how specific approaches will enable studies into glomerular permeability, proximal tubule endocytosis, and microvascular function within the kidney. We attempt to show how visual data can be quantified, thus allowing enhanced understanding of the process under study. Finally, emphasis is given to the possible future opportunities of this technology and its present limitations.  (+info)

Micropuncture gene delivery and intravital two-photon visualization of protein expression in rat kidney. (46/696)

Understanding molecular mechanisms of pathophysiology and disease processes requires the development of new methods for studying proteins in animal tissues and organs. Here, we describe a method for adenoviral-mediated gene transfer into tubule or endothelial cells of the rat kidney. The left kidney of an anesthetized rat was exposed and the lumens of superficial proximal tubules or vascular welling points were microinfused, usually for 20 min. The microinfusion solution contained adenovirus with a cDNA construct of either 1) Xenopus laevis actin depolymerizing factor/cofilin [XAC; wt-green fluorescent protein (GFP)], 2) actin-GFP, or 3) GFP. Sudan black-stained castor oil, injected into nearby tubules, allowed us to localize the microinfused structures for subsequent visualization. Two days later, the rat was anesthetized and the kidneys were fixed for tissue imaging or the left kidney was observed in vivo using two-photon microscopy. Expression of GFP and GFP-chimeric proteins was clearly seen in epithelial cells of the injected proximal tubules and the expressed proteins were localized similarly to their endogenously expressed counterparts. Only a minority of the cells in the virally exposed regions, however, expressed these proteins. Endothelial cells also expressed XAC-GFP after injection of the virus cDNA construct into vascular welling points. An advantage of the proximal tubule and vascular micropuncture approaches is that only minute amounts of virus are required to achieve protein expression in vivo. This micropuncture approach to gene transfer of the virus cDNA construct and intravital two-photon microscopy should be applicable to study of the behavior of any fluorescently tagged protein in the kidney and shows promise in studying renal physiology and pathophysiology.  (+info)

Two-photon absorption of bacteriorhodopsin: formation of a red-shifted thermally stable photoproduct F620. (47/696)

By means of high-intensity 532 nm laser pulses, a photochemical conversion of the initial B(570) state of bacteriorhodopsin (BR) to a stable photoproduct absorbing maximally at approximately 620 nm in BR suspensions and at approximately 610 nm in BR films is induced. This state, which we named F(620), is photochemically further converted to a group of three products with maximal absorptions in the wavelength range from 340 nm to 380 nm, which show identical spectral properties to the so-called P(360) state reported in the literature. The photoconversion from B(570) to F(620) is most likely a resonant two-photon absorption induced step. The formation of F(620) and P(360) leads to a distinguished photo-induced permanent optical anisotropy in BR films. The spectral dependence of the photo-induced anisotropy and the anisotropy orientations at the educt (B(570)) and product (F(620)) wavelengths are strong indicators that F(620) is formed in a direct photochemical step from B(570). The chemical nature of the P(360) products probably is that of a retro-retinal containing BR, but the structural characteristics of the F(620) state are still unclear. The photo-induced permanent anisotropy induced by short laser pulses in BR films helps to better understand the photochemical pathways related to this transition, and it is interesting in view of potential applications as this feature is the molecular basis for permanent optical data storage using BR films.  (+info)

Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region. (48/696)

This report covers the two-photon activation and excitation properties of the PA-GFP, a photoactivatable variant of the Aequorea victoria green fluorescent protein in the spectral region from 720 to 920 nm. It is known from this special form of the molecule that it has an increased level of fluorescence emission when excited at 488 nm after irradiation at lambda approximately 413 nm, under single-photon excitation conditions. Here, we show that upon two-photon irradiation, PA-GFP yields activation in the spectral region from 720 to 840 nm. After photoactivation, the excitation spectrum shifts maintaining the very same emission spectrum of the single-photon case for the native and photoactivated protein. Additionally, when comparing the conventional photoactivation at lambda = 405 nm with a two-photon one, a sharper and better controllable three-dimensional volume of activation is obtained.  (+info)