Regulation of Cl- secretion in seawater fish (Dicentrarchus labrax) gill respiratory cells in primary culture. (25/10657)

1. Primary cultures of sea bass (Dicentrarchus labrax) gill cells grown on permeable membranes form a highly differentiated tight epithelium composed of respiratory-like cells. This preparation was also found to provide a functional model for investigating the hormonal regulation of Cl- secretion. 2. In control conditions, i.e. in the absence of hormones or other stimuli, the cultured epithelium showed a short-circuit current (Isc) of 8.8 +/- 0.4 microA cm-2, a transepithelial potential (Vt) of 28.6 +/- 0.6 mV (serosal side positive), and a transepithelial resistance (Rt) of 5026 +/- 127 Omega cm2. Addition of 50 nM PGE2 caused a stimulation of Isc, Vt and transepithelial conductance, Gt. The increase in Isc was probably due to the elevation in Cl- secretion, since it could be correlated with the stimulation of serosal to mucosal 36Cl- flux. Application of the neurohypophyseal peptide arginine vasotocin (AVT; 50 nM) or the beta-adrenergic agonist isoproterenol (isoprenaline; 0. 5 microM) evoked a stimulation in Cl- secretion, as was shown by the increases in Isc and Gt. The excitatory effect of isoproterenol followed by the inhibitory action of propranolol, a beta-adrenergic antagonist, suggested the presence of beta-adrenergic receptors. Noradrenaline (0.1 microM) elicited a reduction in Isc, Vt and Gt, which was counterbalanced by the addition of phentolamine, an alpha-adrenergic antagonist. This suggested an activation of alpha-adrenergic receptors. 3. This study provides evidence for hormonal control of the Cl- secretion in sea bass gill respiratory cells in culture, involving AVT, prostaglandin (PGE2), and beta- and alpha-adrenergic receptors.  (+info)

Wnt3a-/--like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. (26/10657)

Members of the LEF-1/TCF family of transcription factors have been implicated in the transduction of Wnt signals. However, targeted gene inactivations of Lef1, Tcf1, or Tcf4 in the mouse do not produce phenotypes that mimic any known Wnt mutation. Here we show that null mutations in both Lef1 and Tcf1, which are expressed in an overlapping pattern in the early mouse embryo, cause a severe defect in the differentiation of paraxial mesoderm and lead to the formation of additional neural tubes, phenotypes identical to those reported for Wnt3a-deficient mice. In addition, Lef1(-/-)Tcf1(-/-) embryos have defects in the formation of the placenta and in the development of limb buds, which fail both to express Fgf8 and to form an apical ectodermal ridge. Together, these data provide evidence for a redundant role of LEF-1 and TCF-1 in Wnt signaling during mouse development.  (+info)

Beauveriolides, specific inhibitors of lipid droplet formation in mouse macrophages, produced by Beauveria sp. FO-6979. (27/10657)

Beauveria sp. FO-6979, a soil isolate, was found to produce inhibitors of lipid droplet formation in mouse peritoneal macrophages. A new compound beauveriolide III was isolated along with a known compound beauveriolide I from the fermentation broth of the producing strain by solvent extraction, ODS column chromatography, silica gel column chromatography and preparative HPLC. Beauveriolides I and III caused a reduction in the number and size of cytosolic lipid droplets in macrophages at 10 microM without any cytotoxic effect on macrophages.  (+info)

The effects of crossing porcine renal artery ostia with various endovascular stents. (28/10657)

OBJECTIVES: To compare the effects of crossing renal artery ostia with various stents. METHODS: The renal artery ostia of 24 large white pigs were covered with a Wallstent (nine ostia), a Palmaz stent (nine ostia) and a Memotherm stent (13 ostia). After an interval of 6-15 weeks, aortography, renal pressure and blood samples were performed and the pigs then sacrificed for histological examination. RESULTS: Histological examination revealed an organised collagen matrix with endothelial cells covering the struts in contact with the aorta. This occurred with all stents but was most organised with the Wallstent. This matrix did not involve the renal artery ostia crossed by Wallstents, but in one Palmaz stent and in 12/13 Memotherm stents, a disorganised acellular matrix caused partial ostial occlusion. There was no mean fall in renal artery pressure but traces were damped in 8/13 cases of partial occlusion. There was a rise in serum creatinine in two cases using the Palmaz stent. CONCLUSIONS: Covering renal arteries with the Wallstent appears to be safe in the short-term. Placement of stents with larger struts across renal arteries will require imaging methods, such as intravascular ultrasound (IVUS) to ensure that the ostia are not obstructed.  (+info)

Microvascular architecture of the human urinary bladder wall: a corrosion casting study. (29/10657)

The vascular system of the urinary bladder wall effectively performs its function in spite of considerable spatial changes due to the filling/voiding cycle. However, only a few studies have dealt with the microvascular architecture of the bladder wall and only two, using old-fashioned techniques, were devoted to the human bladder. This study presents the microvasculature of the human bladder wall visualized by scanning electron microscopy of vascular corrosion casts. Postoperative bladder specimens obtained from patients with advanced bladder tumors were filled with small amount (80 ml) of saline and perfused via at least four largest arteries with anticoagulant-containing saline followed by paraformaldehyde/glutaraldehyde fixative and Mercox resin. After polymerization of the resin, the vascular casts were macerated with potassium hydroxide, cleaned with formic acid and water and freeze dried. Only regions of the bladder wall distant to the tumor were examined in light and scanning electron microscopes. The almost empty state of the bladder was manifested by extensive folding of the mucosa and tortuosity of almost all vessels other than capillaries. The branches of main arteries and veins formed an adventitial/serosal plexus which directly supplied/drained the capillary network of the muscularis and sent long perpendicular vessels to the mucosal plexus. These vessels had straight or coiled course depending on whether they terminated at the top or at the base of the mucosal folds. The rich mucosal plexus followed the folds parallel to their surface and gave off short, straight, mostly perpendicular twigs communicating with the subepithelial capillary network. Apart from very few vascular interconnections between the mucosal plexus and the muscularis, the submucosa was generally avascular. The subepithelial capillary network showed extreme density and uneven contours of the capillaries, only in less folded areas of trigone and urethral orifice the network was looser and capillaries thinner. The capillary system of the muscularis was poorly developed. Due to its architecture, tortuosity, and coiling/uncoiling capabilities, the microvasculature of the human urinary bladder wall seems to efficiently accommodate changes associated with cyclic contraction and stretching. Disturbances in blood flow induced by overdistension of the bladder reported in several studies may be due to pressure of the urine affecting the patency of the vessels rather than to the spatial insufficiency of the vascular system.  (+info)

Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. (30/10657)

The submandibular salivary gland of the young adult female mouse has two secretory cell types, acinar and granular duct, which are separated by intercalated ducts. Based on the occurrence of autologous cell division in these cells, they have been traditionally classified as expanding populations. However, differentiation from stem or progenitor cells in the intercalated ducts, usually associated with renewing populations, has also been detected. The question of renewing or expanding populations is resolved by quantitating and integrating the rates of autologous cell division, differentiation, and apoptosis for each cell type. The integrated data shows that both acinar and granular duct cell populations exhibit a substantial positive growth index, whereas the growth index for the intercalated duct cells is moderately negative. On balance, it suggests that the submandibular gland of the young adult female mouse is still growing. Comparison of young female mice with older females suggests that, although overall parenchymal growth slows with age, there is no longer a net loss of intercalated duct cells. Comparison with young adult male submandibular glands indicates that gender differences exist in the rates and mechanisms used for maintaining the different cell populations. The acinar and granular duct cell populations in young adult female mouse submandibular glands are expanding at the expense of the intercalated duct cell population, which appears to be contracting.  (+info)

Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. (31/10657)

The SH2 domain-containing tyrosine phosphatase Shp2 plays a pivotal role during the gastrulation of vertebrate embryos. However, because of the complex phenotype observed in mouse mutant embryos, the precise role of Shp2 during development is unclear. To define the specific functions of this phosphatase, Shp2 homozygous mutant embryonic stem cells bearing the Rosa-26 LacZ transgene were isolated and used to perform a chimeric analysis. Here, we show that Shp2 mutant cells amass in the tail bud of embryonic day 10.5 chimeric mouse embryos and that this accumulation begins at the onset of gastrulation. At this early stage, Shp2 mutant cells collect in the primitive streak of the epiblast and thus show deficiencies in their contribution to the mesoderm lineage. In high-contribution chimeras, we show that overaccumulation of Shp2 mutant cells at the posterior end of the embryo results in two abnormal phenotypes: spina bifida and secondary neural tubes. Consistent with a failure to undergo morphogenic movements at gastrulation, Shp2 is required for embryo fibroblast cells to mount a positive chemotactic response to acidic fibroblast growth factor in vitro. Our results demonstrate that Shp2 is required at the initial steps of gastrulation, as nascent mesodermal cells form and migrate away from the primitive streak. The aberrant behavior of Shp2 mutant cells at gastrulation may result from their inability to properly respond to signals initiated by fibroblast growth factors.  (+info)

The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. (32/10657)

The ability of Neisseria meningitidis (MC) to interact with cellular barriers is essential to its pathogenesis. With epithelial cells, this process has been modeled in two steps. The initial stage of localized adherence is mediated by bacterial pili. After this phase, MC disperse and lose piliation, thus leading to a diffuse adherence. At this stage, microvilli have disappeared, and MC interact intimately with cells and are, in places, located on pedestals of actin, thus realizing attaching and effacing (AE) lesions. The bacterial attributes responsible for these latter phenotypes remain unidentified. Considering that bacteria are nonpiliated at this stage, pili cannot be directly responsible for this effect. However, the initial phase of pilus-mediated localized adherence is required for the occurrence of diffuse adherence, loss of microvilli, and intimate attachment, because nonpiliated bacteria are not capable of such a cellular interaction. In this work, we engineered a mutation in the cytoplasmic nucleotide-binding protein PilT and showed that this mutation increased piliation and abolished the dispersal phase of bacterial clumps as well as the loss of piliation. Furthermore, no intimate attachment nor AE lesions were observed. On the other hand, PilT- MC remained adherent as piliated clumps at all times. Taken together these data demonstrate that the induction of diffuse adherence, intimate attachment, and AE lesions after pilus-mediated adhesion requires the cytoplasmic PilT protein.  (+info)