Analysis of chromosome 1q42.2-43 in 152 families with high risk of prostate cancer. (41/8354)

One hundred fifty-two families with prostate cancer were analyzed for linkage to markers spanning a 20-cM region of 1q42.2-43, the location of a putative prostate cancer-susceptibility locus (PCAP). No significant evidence for linkage was found, by use of both parametric and nonparametric tests, in our total data set, which included 522 genotyped affected men. Rejection of linkage may reflect locus heterogeneity or the confounding effects of sporadic disease in older-onset cases; therefore, pedigrees were stratified into homogeneous subsets based on mean age at diagnosis of prostate cancer and number of affected men. Analyses of these subsets also detected no significant evidence for linkage, although LOD scores were positive at higher recombination fractions, which is consistent with the presence of a small proportion of families with linkage. The most suggestive evidence of linkage was in families with at least five affected men (nonparametric linkage score of 1.2; P=.1). If heterogeneity is assumed, an estimated 4%-9% of these 152 families may show linkage in this region. We conclude that the putative PCAP locus does not account for a large proportion of these families with prostate cancer, although the linkage of a small subset is compatible with these data.  (+info)

Delineation of the critical deletion region for congenital heart defects, on chromosome 8p23.1. (42/8354)

Deletions in the distal region of chromosome 8p (del8p) are associated with congenital heart malformations. Other major manifestations include microcephaly, intrauterine growth retardation, mental retardation, and a characteristic hyperactive, impulsive behavior. We studied genotype-phenotype correlations in nine unrelated patients with a de novo del8p, by using the combination of classic cytogenetics, FISH, and the analysis of polymorphic DNA markers. With the exception of one large terminal deletion, all deletions were interstitial. In five patients, a commonly deleted region of approximately 6 Mb was present, with breakpoints clustering in the same regions. One patient without a heart defect or microcephaly but with mild mental retardation and characteristic behavior had a smaller deletion within this commonly deleted region. Two patients without a heart defect had a more proximal interstitial deletion that did not overlap with the commonly deleted region. Taken together, these data allowed us to define the critical deletion regions for the major features of a del8p.  (+info)

Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. (43/8354)

Since little is known about chromosomal locations harboring type 2 diabetes-susceptibility genes, we conducted a genomewide scan for such genes in a Mexican American population. We used data from 27 low-income extended Mexican American pedigrees consisting of 440 individuals for whom genotypic data are available for 379 markers. We used a variance-components technique to conduct multipoint linkage analyses for two phenotypes: type 2 diabetes (a discrete trait) and age at onset of diabetes (a truncated quantitative trait). For the multipoint analyses, a subset of 295 markers was selected on the basis of optimal spacing and informativeness. We found significant evidence that a susceptibility locus near the marker D10S587 on chromosome 10q influences age at onset of diabetes (LOD score 3.75) and is also linked with type 2 diabetes itself (LOD score 2.88). This susceptibility locus explains 63.8%+/-9.9% (P=. 000016) of the total phenotypic variation in age at onset of diabetes and 65.7%+/-10.9% (P=.000135) of the total variation in liability to type 2 diabetes. Weaker evidence was found for linkage of diabetes and of age at onset to regions on chromosomes 3p, 4q, and 9p. In conclusion, our strongest evidence for linkage to both age at onset of diabetes and type 2 diabetes itself in the Mexican American population was for a region on chromosome 10q.  (+info)

Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers. (44/8354)

Present-day Pacific islanders are thought to be the descendants of Neolithic agriculturalists who expanded from island South-east Asia several thousand years ago. They speak languages belonging to the Austronesian language family, spoken today in an area spanning half of the circumference of the world, from Madagascar to Easter Island, and from Taiwan to New Zealand. To investigate the genetic affinities of the Austronesian-speaking peoples, we analysed mitochondrial DNA, HLA and Y-chromosome polymorphisms in individuals from eight geographical locations in Asia and the Pacific (China, Taiwan, Java, New Guinea highlands, New Guinea coast, Trobriand Islands, New Britain and Western Samoa). Our results show that the demographic expansion of the Austronesians has left a genetic footprint. However, there is no simple correlation between languages and genes in the Pacific.  (+info)

Molecular analysis of 1p32 genetic involvement in pediatric T-cell non-Hodgkin's lymphoma. (45/8354)

BACKGROUND AND OBJECTIVE: T-cell acute lymphoblastic leukemia (T-ALL) and lymphoblastic T-cell non-Hodgkin's lymphoma (T-NHL) are closely related disorders, and distinguishing between the two may be difficult. Cytogenetic investigations of large NHL series reported different recurring chromosomal alterations. Among these, aberrations of chromosome 1p seem to be associated with T-cell differentiation, the region most frequently involved in breakpoints being band 1p32-36. Deletions and translocations involving the same chromosomal region are frequently observed in T-ALL, in which one of the most common genetic changes is the breakage of the TAL1 gene, mapped to the 1p32 chromosomal region. The objective of this study was to assess the possibility of TAL1 involvement also in T-NHL. DESIGN AND METHODS: A series of 17 pediatric T-NHL patients was molecularly characterized by microsatellite markers analysis and by TAL1 gene microdeletions. RESULTS: TAL1 gene rearrangement was found in one case, while loss of heterozygosity (LOH) and microsatellite instability (MI) was identified in another case. INTERPRETATION AND CONCLUSIONS: Overall our findings indicate that, differently from T-ALL, neither TAL1 gene involvement nor LOH or MI at 1p32 appear particularly relevant in the oncogenic process of T-NHL transformation.  (+info)

MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. (46/8354)

The DNA mismatch repair (MMR) is a specialized system, highly conserved throughout evolution, involved in the maintenance of genomic integrity. To identify novel human genes that may function in MMR, we employed the yeast interaction trap. Using the MMR protein MLH1 as bait, we cloned MED1. The MED1 protein forms a complex with MLH1, binds to methyl-CpG-containing DNA, has homology to bacterial DNA repair glycosylases/lyases, and displays endonuclease activity. Transfection of a MED1 mutant lacking the methyl-CpG-binding domain (MBD) is associated with microsatellite instability (MSI). These findings suggest that MED1 is a novel human DNA repair protein that may be involved in MMR and, as such, may be a candidate eukaryotic homologue of the bacterial MMR endonuclease, MutH. In addition, these results suggest that cytosine methylation may play a role in human DNA repair.  (+info)

Cladistic association analysis of Y chromosome effects on alcohol dependence and related personality traits. (47/8354)

Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism-antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.  (+info)

Frequent loss of heterozygosity at the DNA mismatch-repair loci hMLH1 and hMSH3 in sporadic breast cancer. (48/8354)

To study the involvement of DNA mismatch-repair genes in sporadic breast cancer, matched normal and tumoral DNA samples of 22 patients were analysed for genetic instability and loss of heterozygosity (LOH) with 42 microsatellites at or linked to hMLH1 (3p21), hMSH2 (2p16), hMSH3 (5q11-q13), hMSH6 (2p16), hPMS1 (2q32) and hPMS2 (7p22) loci. Chromosomal regions 3p21 and 5q11-q13 were found hemizygously deleted in 46% and 23% of patients respectively. Half of the patients deleted at hMLH1 were also deleted at hMSH3. The shortest regions of overlapping (SRO) deletions were delimited by markers D3S1298 and D3S1266 at 3p21 and by D5S647 and D5S418 at 5q11-q13. Currently, the genes hMLH1 (3p21) and hMSH3 (5q11-q13) are the only known candidates located within these regions. The consequence of these allelic losses is still unclear because none of the breast cancers examined displayed microsatellite instability, a hallmark of mismatch-repair defect during replication error correction. We suggest that hMLH1 and hMSH3 could be involved in breast tumorigenesis through cellular functions other than replication error correction.  (+info)