The bantam gene regulates Drosophila growth. (9/12806)

We report here the consequences of mutations of a novel locus, named bantam, whose product is involved in the regulation of growth in Drosophila. bantam mutant animals are smaller than wild type, due to a reduction in cell number but not cell size, and do not have significant disruptions in patterning. Conversely, overexpression of the bantam product using the EP element EP(3)3622 causes overgrowth of wing and eye tissue. Overexpression in clones of cells results in an increased rate of cell proliferation and a matched increase in cellular growth rate, such that the resulting tissue is composed of more cells of a size comparable to wild type. These effects are strikingly similar to those associated with alterations in the activity of the cyclinD-cdk4 complex. However, epistasis and genetic interaction analyses indicate that bantam and cyclinD-cdk4 operate independently. Thus, the bantam locus represents a novel regulator of tissue growth.  (+info)

MicroRNA maturation: stepwise processing and subcellular localization. (10/12806)

MicroRNAs (miRNAs) constitute a novel, phylogenetically extensive family of small RNAs ( approximately 22 nucleotides) with potential roles in gene regulation. Apart from the finding that miRNAs are produced by Dicer from the precursors of approximately 70 nucleotides (pre-miRNAs), little is known about miRNA biogenesis. Some miRNA genes have been found in close conjunction, suggesting that they are expressed as single transcriptional units. Here, we present in vivo and in vitro evidence that these clustered miRNAs are expressed polycistronically and are processed through at least two sequential steps: (i) generation of the approximately 70 nucleotide pre-miRNAs from the longer transcripts (termed pri-miRNAs); and (ii) processing of pre-miRNAs into mature miRNAs. Subcellular localization studies showed that the first and second steps are compartmentalized into the nucleus and cytoplasm, respectively, and that the pre-miRNA serves as the substrate for nuclear export. Our study suggests that the regulation of miRNA expression may occur at multiple levels, including the two processing steps and the nuclear export step. These data will provide a framework for further studies on miRNA biogenesis.  (+info)

Prediction of plant microRNA targets. (11/12806)

We predict regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity. Complementary sites within predicted targets are conserved in rice. Of the 49 predicted targets, 34 are members of transcription factor gene families involved in developmental patterning or cell differentiation. The near-perfect complementarity between plant miRNAs and their targets suggests that many plant miRNAs act similarly to small interfering RNAs and direct mRNA cleavage. The targeting of developmental transcription factors suggests that many plant miRNAs function during cellular differentiation to clear key regulatory transcripts from daughter cell lineages.  (+info)

CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. (12/12806)

BACKGROUND: In metazoans, microRNAs, or miRNAs, constitute a growing family of small regulatory RNAs that are usually 19-25 nucleotides in length. They are processed from longer precursor RNAs that fold into stem-loop structures by the ribonuclease Dicer and are thought to regulate gene expression by base pairing with RNAs of protein-coding genes. In Arabidopsis thaliana, mutations in CARPEL FACTORY (CAF), a Dicer homolog, and those in a novel gene, HEN1, result in similar, multifaceted developmental defects, suggesting a similar function of the two genes, possibly in miRNA metabolism. RESULTS: To investigate the potential functions of CAF and HEN1 in miRNA metabolism, we aimed to isolate miRNAs from Arabidopsis and examine their accumulation during plant development in wild-type plants and in hen1-1 and caf-1 mutant plants. We have isolated 11 miRNAs, some of which have potential homologs in tobacco, rice, and maize. The putative precursors of these miRNAs have the capacity to form stable stem-loop structures. The accumulation of these miRNAs appears to be spatially or temporally controlled in plant development, and their abundance is greatly reduced in caf-1 and hen1-1 mutants. HEN1 homologs are found in bacterial, fungal, and metazoan genomes. CONCLUSIONS: miRNAs are present in both plant and animal kingdoms. An evolutionarily conserved mechanism involving a protein, known as Dicer in animals and CAF in Arabidopsis, operates in miRNA metabolism. HEN1 is a new player in miRNA accumulation in Arabidopsis, and HEN1 homologs in metazoans may have a similar function. The developmental defects associated with caf-1 and hen1-1 mutations and the patterns of miRNA accumulation suggest that miRNAs play fundamental roles in plant development.  (+info)

Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. (13/12806)

Micro-RNAs (miRNAs) are regulatory molecules that mediate effects by interacting with messenger RNA (mRNA) targets. Here we show that Arabidopsis thaliana miRNA 39 (also known as miR171), a 21-ribonucleotide species that accumulates predominantly in inflorescence tissues, is produced from an intergenic region in chromosome III and functionally interacts with mRNA targets encoding several members of the Scarecrow-like (SCL) family of putative transcription factors. miRNA 39 is complementary to an internal region of three SCL mRNAs. The interaction results in specific cleavage of target mRNA within the region of complementarity, indicating that this class of miRNA functions like small interfering RNA associated with RNA silencing to guide sequence-specific cleavage in a developmentally controlled manner.  (+info)

Fragile X-related protein and VIG associate with the RNA interference machinery. (14/12806)

RNA interference (RNAi) is a flexible gene silencing mechanism that responds to double-stranded RNA by suppressing homologous genes. Here, we report the characterization of RNAi effector complexes (RISCs) that contain small interfering RNAs and microRNAs (miRNAs). We identify two putative RNA-binding proteins, the Drosophila homolog of the fragile X mental retardation protein (FMRP), dFXR, and VIG (Vasa intronic gene), through their association with RISC. FMRP, the product of the human fragile X locus, regulates the expression of numerous mRNAs via an unknown mechanism. The possibility that dFXR, and potentially FMRP, use, at least in part, an RNAi-related mechanism for target recognition suggests a potentially important link between RNAi and human disease.  (+info)

MicroRNAs: something new under the sun. (15/12806)

MicroRNAs are plentiful in plants, as in animals. The effects of mutations which disrupt their processing imply that miRNAs have important roles in plant development. Although the targets of these miRNAs are still not known, excellent candidates have been identified based on sequence similarity to the miRNAs.  (+info)

Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. (16/12806)

Micro-RNAs (miR genes) are a large family of highly conserved noncoding genes thought to be involved in temporal and tissue-specific gene regulation. MiRs are transcribed as short hairpin precursors ( approximately 70 nt) and are processed into active 21- to 22-nt RNAs by Dicer, a ribonuclease that recognizes target mRNAs via base-pairing interactions. Here we show that miR15 and miR16 are located at chromosome 13q14, a region deleted in more than half of B cell chronic lymphocytic leukemias (B-CLL). Detailed deletion and expression analysis shows that miR15 and miR16 are located within a 30-kb region of loss in CLL, and that both genes are deleted or down-regulated in the majority ( approximately 68%) of CLL cases.  (+info)