Development of sequential injection-lab-at-valve (SI-LAV) micro-extraction instrumentation for the spectrophotometric determination of an anionic surfactant. (33/1368)

The development of instrumentation for sequential injection analysis with a "lab-at-valve" (SIA-LAV) micro-extraction system is presented. The extractive determination of an anionic surfactant using methylene blue was selected as a model. Sample, reagents and organic solvent were sequentially aspirated into an extraction coil connected to the center of a selection valve, where extraction took place by flow reversal. The aqueous and organic phases were separated in a LAV unit attached to one port of the valve. The LAV unit situated a fiber-optic spectrophotometer to monitor the absorbance change of the extract product in the organic phase. The developed SIA-LAV system offers an alternative micro-total analysis system for automated micro-extraction.  (+info)

Simple spectrophotometric flow injection system with an in-valve minicolumn for enhancement during the determination of chromium(III) using EDTA. (34/1368)

A simple spectrophotometric flow injection (FI) procedure for the determination of Cr(III) using ethylenediaminetetraacetic acid (EDTA) was developed. An FI system with a column packed with Amberlite IR-120(H) was employed for sample pretreatment. This leads to the possibility of a single standard calibration. A linear calibration in a range of 10-27 microg Cr(III) was obtained with a detection limit of 1 microg Cr(III) and RSD of 2% (18 microg Cr(III), n=12). The proposed procedure was applied for determination of Cr(III) in leachate and dietary supplement samples. The results agreed with those obtained by the standard methods.  (+info)

Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. (35/1368)

Experimental systems that provide temporal and spatial control of chemical gradients are required for probing into the complex mechanisms of eukaryotic cell chemotaxis. However, no current technique can simultaneously generate stable chemical gradients and allow fast gradient changes. We developed a microfluidic system with microstructured membranes for exposing neutrophils to fast and precise changes between stable, linear gradients of the known chemoattractant Interleukin-8 (IL-8). We observed that rapidly lowering the average concentration of IL-8 within a gradient, while preserving the direction of the gradient, resulted in temporary neutrophil depolarization. Fast reversal of the gradient direction while increasing or decreasing the average concentration also resulted in temporary depolarization. Neutrophils adapted and maintained their directional motility, only when the average gradient concentration was increased and the direction of the gradient preserved. Based on these observations we propose a two-component temporal sensing mechanism that uses variations of chemokine concentration averaged over the entire cell surface and localized at the leading edge, respectively, and directs neutrophil responses to changes in their chemical microenvironment.  (+info)

A general method for manipulating DNA sequences from any organism with optical tweezers. (36/1368)

Mechanical manipulation of single DNA molecules can provide novel information about DNA properties and protein-DNA interactions. Here we describe and characterize a useful method for manipulating desired DNA sequences from any organism with optical tweezers. Molecules are produced from either genomic or cloned DNA by PCR using labeled primers and are tethered between two optically trapped microspheres. We demonstrate that human, insect, plant, bacterial and viral sequences ranging from approximately 10 to 40 kilobasepairs can be manipulated. Force-extension measurements show that these constructs exhibit uniform elastic properties in accord with the expected contour lengths for the targeted sequences. Detailed protocols for preparing and manipulating these molecules are presented, and tethering efficiency is characterized as a function of DNA concentration, ionic strength and pH. Attachment strength is characterized by measuring the unbinding time as a function of applied force. An alternative stronger attachment method using an amino-carboxyl linkage, which allows for reliable DNA overstretching, is also described.  (+info)

High-throughput multi-antigen microfluidic fluorescence immunoassays. (37/1368)

Here we describe the development of a high-throughput multi-antigen microfluidic fluorescence immunoassay system. A 100-chamber polydimethylsiloxane (PDMS) chip performs up to 5 tests for each of 10 samples. In this particular study system, the specificity of detection was demonstrated, and calibration curves were produced for C-reactive protein (CRP), prostate-specific antigen (PSA), ferritin, and vascular endothelial growth factor (VEGF). The measurements show sensitivity at and below clinically normal levels (with a signal-to-noise ratio >8 at as low as 10 pM antigen concentration). The chip uses 100 nL per sample for all tests. The developed system is an important step toward derivative immunoassay applications in scientific research and "point-of-care" testing in medicine.  (+info)

BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. (38/1368)

The tricarboxylate reagent benzene-1,3,5-triacetic acid (BTA) was used to attach 5'-aminated DNA primers and templates on an aminosilanized glass surface for subsequent generation of DNA colonies by in situ solid-phase amplification. We have characterized the derivatized surfaces for the chemical attachment of oligonucleotides and evaluate the properties relevant for the amplification process: surface density, thermal stability towards thermocycling, functionalization reproducibility and storage stability. The derivatization process, first developed for glass slides, was then adapted to microfabricated glass channels containing integrated fluidic connections. This implementation resulted in an important reduction of reaction times, consumption of reagents and process automation. Innovative analytical methods for the characterization of attached DNA were developed for assessing the surface immobilized DNA content after amplification. The results obtained showed that the BTA chemistry is compatible and suitable for forming highly dense arrays of DNA colonies with optimal surface coverage of about 10 million colonies/cm(2) from the amplification of initial single-template DNA molecules immobilized. We also demonstrate that the dsDNA colonies generated can be quantitatively processed in situ by restriction enzymes digestion. DNA colonies generated using the BTA reagent can be used for further sequence analysis in an unprecedented parallel fashion for low-cost genomic studies.  (+info)

On-chip non-equilibrium dissociation curves and dissociation rate constants as methods to assess specificity of oligonucleotide probes. (39/1368)

Nucleic acid hybridization serves as backbone for many high-throughput systems for detection, expression analysis, comparative genomics and re-sequencing. Specificity of hybridization between probes and intended targets is always critical. Approaches to ensure and evaluate specificity include use of mismatch probes, obtaining dissociation curves rather than single temperature hybridizations, and comparative hybridizations. In this study, we quantify effects of mismatch type and position on intensity of hybridization signals and provide a new approach based on dissociation rate constants to evaluate specificity of hybridized signals in complex target mixtures. Using an extensive set of 18mer oligonucleotide probes on an in situ synthesized biochip platform, we demonstrate that mismatches in the center of the probe are more discriminating than mismatches toward the extremities of the probe and mismatches toward the attached end are less discriminating than those toward the loose end. The observed destabilizing effect of a mismatch type agreed in general with predictions using the nearest neighbor model. Use of a new parameter, specific dissociation temperature (T(d-w), temperature of maximum specific dissociation rate constant), obtained from probe-target duplex dissociation profiles considerably improved the evaluation of specificity. These results have broad implications for hybridization data obtained from complex mixtures of nucleic acids.  (+info)

Interfacing capillary gel microfluidic chips with infrared laser desorption mass spectrometry. (40/1368)

We report on the fabrication and performance of a gel microfluidic chip interfaced to laser desorption/ionization (LDI) mass spectrometry with a time-of-flight mass analyzer. The chip was fabricated from poly(methylmethacrylate) with a poly(dimethyl siloxane) cover. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed in the channel of the microfluidic chip. After electrophoresis, the cover was removed and either the PDMS chip or the PMMA cover was mounted in a modified MALDI ion source for analysis. Ions were formed by irradiating the channel with 2.95 microm radiation from a pulsed optical parametric oscillator (OPO), which is coincident with IR absorption by N-H and O-H stretch of the gel components. No matrix was added. The microfluidic chip design allowed a decrease in the volume of material required for analysis over conventional gel slabs, thus enabling improvement in the detection limit to a pmol level, a three orders of magnitude improvement over previous studies in which desorption was achieved from an excised section of a conventional gel.  (+info)