A novel 50 kDa protein forms complexes with protein phosphatase 4 and is located at centrosomal microtubule organizing centres. (25/396)

Protein phosphatase 4 (PPP4) is a protein serine/threonine phosphatase that has been implicated in microtubule organization at centrosomes. Complexes of PPP4 with high apparent molecular masses (450 and 600 kDa) were purified from mammalian skeletal muscle and testis to near homogeneity. Amino acid sequences derived from a protein component present in both complexes were utilized to identify a human cDNA. The encoded putative PPP4 regulatory subunit (termed PPP4R2), comprising 453 amino acids, had a molecular mass of 50.4 kDa. The interaction of PPP4R2 with PPP4 catalytic subunit (PPP4c) was confirmed by co-sedimentation of PPP4c with PPP4R2 expressed in bacteria and human cells. PPP4c formed a complex of 450 kDa with baculovirus expressed His(6)-tagged PPP4R2. Immunocytological detection of PPP4R2 at centrosomes suggests that it may target PPP4c to this location. Native 450 kDa and 600 kDa PPP4 complexes are inactive, but can be activated by basic proteins, suggesting that PPP4R2 may also regulate the activity of PPP4c at centrosomal microtubule organising centres.  (+info)

Microcystin-LR toxicodynamics, induced pathology, and immunohistochemical localization in livers of blue-green algae exposed rainbow trout (oncorhynchus mykiss). (26/396)

With this retrospective study, we investigated the temporal pattern of toxin exposure and pathology, as well as the topical relationship between hepatotoxic injury and localization of microcystin-LR, a potent hepatotoxin, tumor promoter, and inhibitor of protein phosphatases-1 and -2A (PP), in livers of MC-gavaged rainbow trout (Oncorhynchus mykiss) yearlings, using an immunohistochemical detection method and MC-specific antibodies. H&E stains of liver sections were used to determine pathological changes. Nuclear morphology of hepatocytes and ISEL analysis were employed as endpoints to detect the advent of apoptotic cell death in hepatocytes. Trout had been gavaged with lyophilized cyanobacteria (Microcystis aeruginosa, strain PCC 7806) at acutely toxic doses of 5700 microg microcystin (MC) per kg of body weight (bw), as described previously (Tencalla and Dietrich, 1997). Briefly, 3 control and 3 test animal were killed 1, 3, 12, 24, 48, and 72 h after bolus dosing, and livers were fixed and paraffin embedded for histological analysis and later retrospective histochemical analyses. The results of the immunohistochemistry reported here revealed a time dependent, discernible increase in MC-positive staining intensity throughout the liver, clearly not concurring with the kinetics of hepatic PP inhibition observed in the same fish and reported in an earlier publication by Tencalla and Dietrich (1997). After 3 h, marked and increasing MC-immunopositivity was observed in the cytoplasm, as well as the nuclei of hepatocytes. Apoptotic cell death could be detected after 48 h, at the very earliest. These data suggest that accumulation of MC and subsequent changes in cellular morphology, PP inhibition, and hepatocyte necrosis represent the primary events in microcystin induced hepatotoxicity and appear to be associated with the reversible interaction of MC with the PP. In contrast, apoptotic cell death, as demonstrated here, seems to be of only secondary nature and presumably results from the covalent interaction of MC with cellular and nuclear PP as well as other thiol containing cellular proteins.  (+info)

Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. (27/396)

The peptide synthetase gene operon, which consists of mcyA, mcyB, and mcyC, for the activation and incorporation of the five amino acid constituents of microcystin has been identified [T. Nishizawa et al. (1999) J. Biochem. 126, 520-529]. By sequencing an additional 34 kb of DNA from microcystin-producing Microcystis aeruginosa K-139, we identified the residual microcystin synthetase gene operon, which consists of mcyD, mcyE, mcyF, and mcyG, in the opposite orientation to the mcyABC operon. McyD consisted of two polyketide synthase modules, and McyE contained a polyketide synthase module at the N-terminus and a peptide synthetase module at the C-terminus. McyF was found to exhibit similarity to amino acid racemase. McyG consisted of a peptide synthetase module at the N-terminus and a polyketide synthase at the C-terminus. The microcystin synthetase gene cluster was conserved in another microcystin-producing strain, Microcystis sp. S-70, which produces Microcystin-LR, -RR, and -YR. Insertional mutagenesis of mcyA, mcyD, or mcyE in Microcystis sp. S-70 abolished microcystin production. In conclusion, the mcyDEFG operon is presumed to be responsible for 3-amino-9-methoxy-2,6, 8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda) biosynthesis, and the incorporation of Adda and glutamic acid into the microcystin molecule.  (+info)

Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. (28/396)

The presence of blue-green algae (BGA) toxins in surface waters used for drinking water sources and recreation is receiving increasing attention around the world as a public health concern. However, potential risks from exposure to these toxins in contaminated health food products that contain BGA have been largely ignored. BGA products are commonly consumed in the United States, Canada, and Europe for their putative beneficial effects, including increased energy and elevated mood. Many of these products contain Aphanizomenon flos-aquae, a BGA that is harvested from Upper Klamath Lake (UKL) in southern Oregon, where the growth of a toxic BGA, Microcystis aeruginosa, is a regular occurrence. M. aeruginosa produces compounds called microcystins, which are potent hepatotoxins and probable tumor promoters. Because M. aeruginosa coexists with A. flos-aquae, it can be collected inadvertently during the harvesting process, resulting in microcystin contamination of BGA products. In fall 1996, the Oregon Health Division learned that UKL was experiencing an extensive M. aeruginosa bloom, and an advisory was issued recommending against water contact. The advisory prompted calls from consumers of BGA products, who expressed concern about possible contamination of these products with microcystins. In response, the Oregon Health Division and the Oregon Department of Agriculture established a regulatory limit of 1 microg/g for microcystins in BGA-containing products and tested BGA products for the presence of microcystins. Microcystins were detected in 85 of 87 samples tested, with 63 samples (72%) containing concentrations > 1 microg/g. HPLC and ELISA tentatively identified microcystin-LR, the most toxic microcystin variant, as the predominant congener.  (+info)

Inhibition of smooth-muscle myosin-light-chain phosphatase by Ruthenium Red. (29/396)

Ruthenium Red (RuR) is widely used as an inhibitor of ryanodine receptor Ca(2+) release channels, but has additional effects such as the induction of Ca(2+) sensitization of contraction of permeabilized smooth muscles. To address the mechanism underlying this process, we examined the effects of RuR on contractility in permeabilized guinea-pig ileum and on the activity of myosin-light-chain phosphatase (MP). RuR increased the force at submaximal [Ca(2+)] (pCa 6.3) approx. 4-fold. This effect was not observed after thiophosphorylation of MP. RuR also seemed capable of preventing the thiophosphorylation of MP, suggesting a direct interaction of RuR with MP. Consistent with this possibility, smooth-muscle MP was inhibited by RuR in a concentration-dependent manner (IC(50) 23 microM). Exogenous calmodulin significantly increased RuR-induced contraction at pCa 6.3 but had little effect on contraction induced by microcystin at this [Ca(2+)]. Ca(2+)-independent contraction was induced by RuR (EC(50) 843 microM) and by microcystin (EC(50) 59 nM) but the maximal force induced by RuR was smaller than that induced by microcystin. The addition of 300 microM RuR enhanced the contraction induced by 30 nM microcystin but markedly decreased that induced by 1 microM microcystin. Such a dual action of RuR on microcystin-induced effects was not observed in experiments using purified MP. We conclude that the RuR-induced Ca(2+) sensitization of smooth-muscle contraction is due to the direct inhibition of MP by RuR.  (+info)

Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. (30/396)

Microcystins are a group of highly liver-specific toxins, although their exact mechanisms of action remain unclear. We examined the effects of microcystic cyanobacteria extract (MCE) collected from a contaminated water source on the organization of cellular microtubules (MTs) and microfilaments (MFs) in hepatocytes. We also investigated the effects on lactate dehydrogenase (LDH) leakage and intracellular glutathione (GSH). Primary cultured rat hepatocytes exposed to MCE (equivalent to 125 microg/mL lyophilized algae cells) showed a characteristic disruption of MTs and MFs in a time-dependent manner. Under these conditions, MCE caused aggregation of MTs and MFs and a severe loss of MTs in some cells. Moreover, MCE-induced cytoskeletal alterations preceded the LDH leakage. On the other hand, the treatment of cells with MCE led to a dose-dependent increase of intracellular GSH. However, time-course study showed a biphasic change of intracellular GSH levels with a significant increase in the initial stage followed by a decrease after prolonged treatment. Furthermore, pretreatment with N-acetylcystein (NAC), a GSH precursor, significantly enhanced the intracellular GSH level and decreased the MCE-induced cytotoxicity as well as cytoskeleton changes. In contrast, buthionine-(S, R)-sulfoximine, a specific GSH synthesis inhibitor, increased the cell susceptibility to MCE-induced cytotoxicity by depleting the intracellular GSH level. These findings suggest that intracellular GSH plays an important role in MCE-induced cytotoxicity and cytoskeleton changes in primary cultured rat hepatocytes. Increasing intracellular GSH levels protect cells from MCE-induced cytotoxicity and cytoskeleton changes.  (+info)

[Ca(2+)](i)- and insulin-stimulating effect of the non-membranepermeable phosphatase-inhibitor microcystin-LR in intact insulin-secreting cells (RINm5F). (31/396)

1. Microcystin-LR, a specific and effective inhibitor of serine/threonine phosphatases type 1/2A which does not permeate cells, was used to distinguish intracellular and extracellular effects of phosphatase inhibitors on insulin secretion by RINm5F cells. 2. Incubation of intact RINm5F cells with microcystin-LR (0.1 - 2 microM) almost doubled basal insulin release at 3 mM glucose but left maximal insulin release induced by KCl (30 mM) unaffected. 3. In parallel, there was an increase in cytosolic Ca(2+) by up to half maximum, which could be suppressed by the Ca(2+)-channel blocker D600. 4. In contrast, microcystin-LR incubation of intact cells did not affect phosphatase activity but significantly reduced phosphatase activity when used in cellular fractions. 5. From these data we conclude that microcystin-LR could affect Ca(2+)-channels and insulin release by inhibiting an extracellular phosphatase-like activity.  (+info)

Prevention of toxin-induced cytoskeletal disruption and apoptotic liver cell death by the grapefruit flavonoid, naringin. (32/396)

The protein phosphatase-inhibitory algal toxins, okadaic acid and microcystin-LR, induced overphosphorylation of keratin and disruption of the keratin cytoskeleton in freshly isolated rat hepatocytes. In hepatocyte cultures, the toxins elicited DNA fragmentation and apoptotic cell death within 24 h. All these toxin effects could be prevented by the grapefruit flavonoid, naringin. The cytoprotective effect of naringin was apparently limited to normal hepatocytes, since the toxin-induced apoptosis of hepatoma cells, rat or human, was not prevented by the flavonoid.  (+info)