Differential regulation of synaptic GABAA receptors by cAMP-dependent protein kinase in mouse cerebellar and olfactory bulb neurones. (17/396)

1. It has been demonstrated that the regulation of recombinant GABAA receptors by phosphorylation depends on the subunit composition. Here we studied the regulation of synaptic GABAA receptor function by cAMP-dependent protein kinase (PKA) in neurones expressing distinct receptor subtypes. 2. Light microscopic immunocytochemistry revealed that granule cells of the olfactory bulb express only the beta3 as the beta subunit variant, whereas cerebellar stellate and basket cells express only the beta2 as the beta subunit. 3. In cerebellar interneurones, intracellular application of 20 microM microcystin, a protein phosphatase 1/2A inhibitor, prolonged (63 +/- 14 %; mean +/- s.e.m.) the decay time course of miniature IPSCs (mIPSCs) without significantly affecting their amplitude, rise time and frequency. The effect of microcystin could be blocked by co-applying PKA inhibitory peptide (PKA-I, 1 microM). 4. No significant changes in any of the mIPSC parameters could be detected after intracellular application of PKA-I alone or following the inhibition of calcineurin with FK506 (50 nM). 5. In granule cells of the olfactory bulb expressing the beta3 subunit fast and slowly rising mIPSCs were detected, resulting in a bimodal distribution of the 10-90 % rise times, suggesting two distinct populations of events. Fast rising mIPSCs (mIPSCFR) had a 10-90 % rise time of 410 +/- 50 micros, an amplitude of 68 +/- 6 pA, and a weighted decay time constant (tauw) of 15.8 +/- 2.9 ms. In contrast, slowly rising mIPSCs (mIPSCSR) displayed an approximately threefold slower rise time (1.15 +/- 0.12 ms), 57 % smaller amplitude (29 +/- 1.7 pA), but had a tauw (16.8 +/- 3.0 ms) similar to that of the fast events. 6. mIPSCs in olfactory granule cells were not affected by the intracellular perfusion of microcystin. In spite of this, intracellular administration of constitutively active PKA caused a small, gradual, but significant increase (18 +/- 5 %) in the amplitude of the events without changing their time course. 7. These findings demonstrate a cell-type-dependent regulation of synaptic inhibition by protein phosphorylation. Furthermore, our results show that the effect of PKA-mediated phosphorylation on synaptic inhibition depends upon the subunit composition of postsynaptic GABAA receptors.  (+info)

Protein phosphatases PP1 and PP2A are located in distinct positions in the Chlamydomonas flagellar axoneme. (18/396)

We postulated that microcystin-sensitive protein phosphatases are integral components of the Chlamydomonas flagellar axoneme, positioned to regulate inner arm dynein activity. To test this, we took a direct biochemical approach. Microcystin-Sepharose affinity purification revealed a prominent 35-kDa axonemal protein, predicted to be the catalytic subunit of type-1 protein phosphatase (PP1c). We cloned the Chlamydomonas PP1c and produced specific polyclonal peptide antibodies. Based on western blot analysis, the 35-kDa PP1c is anchored in the axoneme. Moreover, analysis of flagella and axonemes from mutant strains revealed that PP1c is primarily, but not exclusively, anchored in the central pair apparatus, associated with the C1 microtubule. Thus, PP1 is part of the central pair mechanism that controls flagellar motility. Two additional axonemal proteins of 62 and 37 kDa were also isolated using microcystin-Sepharose affinity. Based on direct peptide sequence and western blots, these proteins are the A- and C-subunits of type 2A protein phosphatase (PP2A). The axonemal PP2A is not one of the previously identified components of the central pair apparatus, outer arm dynein, inner arm dynein, dynein regulatory complex or the radial spokes. We postulate PP2A is anchored on the doublet microtubules, possibly in position to directly control inner arm dynein activity.  (+info)

Desensitization to LPS after ethanol involves the effect of endotoxin on voltage-dependent calcium channels. (19/396)

Hepatic macrophages are sensitized to alcohol in 24 h due to increases in the endotoxin receptor, CD14; however, desensitization to lipopolysaccharide (LPS), which occurred earlier, could not be explained by changes in CD14. Therefore, the purpose of this work was to attempt to understand factors responsible for ethanol-induced desensitization to LPS in hepatic macrophages. Rats were given ethanol (5 g/kg body wt) intragastrically, and hepatic macrophages were isolated 2 h later. After addition of endotoxin, intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured using fura 2 and tumor necrosis factor (TNF)-alpha was measured by ELISA. Ethanol given 2 h before injection of LPS totally prevented liver injury and blunted LPS-induced increases in [Ca(2+)](i) and TNF-alpha in hepatic macrophages. Furthermore, the protein kinase C (PKC) agonist phorbol 12-myristate 13-acetate and acute ethanol treatment both activated PKC and largely prevented the influx of [Ca(2+)](i) caused by LPS. Sterilization of the gut with antibiotics completely blocked all effects of ethanol on [Ca(2+)](i) and TNF-alpha release. Thus ethanol-induced desensitization of hepatic macrophages correlates with gut-derived endotoxin after ethanol and involves the effect of PKC on voltage-dependent Ca(2+) channels.  (+info)

Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. (20/396)

The production of microcystins (MC) from Microcystis aeruginosa UTEX 2388 was investigated in a P-limited continuous culture. MC (MC-LR, MC-RR, and MC-YR) from lyophilized M. aeruginosa were extracted with 5% acetic acid, purified by a Sep-Pak C(18) cartridge, and then analyzed by high-performance liquid chromatography with a UV detector and Nucleosil C(18) reverse-phase column. The specific growth rate (mu) of M. aeruginosa was within the range of 0.1 to 0.8/day and was a function of the cellular P content under a P limitation. The N/P atomic ratio of steady-state cells in a P-limited medium varied from 24 to 15 with an increasing mu. The MC-LR and MC-RR contents on a dry weight basis were highest at mu of 0.1/day at 339 and 774 microg g(-1), respectively, while MC-YR was not detected. The MC content of M. aeruginosa was higher at a lower mu, whereas the MC-producing rate was linearly proportional to mu. The C fixation rate at an ambient irradiance (160 microeinsteins m(-2) s(-1)) increased with mu. The ratios of the MC-producing rate to the C fixation rate were higher at a lower mu. Accordingly, the growth of M. aeruginosa was reduced under a P limitation due to a low C fixation rate, whereas the MC content was higher. Consequently, increases in the MC content per dry weight along with the production of the more toxic form, MC-LR, were observed under more P-limited conditions.  (+info)

Binding of select forms of pRB to protein phosphatase type 1 independent of catalytic activity. (21/396)

The product of the retinoblastoma susceptibility gene, pRB, is a demonstrated substrate for the type 1 serine/threonine protein phosphatases (PP1). Curiously, there has been a paucity of data supporting the idea that phosphorylated pRB can be found in a complex with PP1. To more fully characterize the association between these two proteins, we utilized a PP1-affinity chromatography approach to increase our ability to capture from mammalian cell lysate populations of pRB capable of binding to PP1. Western blot analysis of the bound proteins indicates that both faster migrating, hypophosphorylated pRB, as well as slower migrating, hyperphosphorylated pRB can bind. Phosphorylated pRB binding was confirmed by immunoprecipitation of eluted 32P-labeled pRB. In addition, Western blotting of eluted proteins with pRB phosphorylated-site-specific antibodies revealed select phosphorylated forms of pRB binding to PP1. Similar binding studies performed with toxin-inhibited PP1 indicate that catalytic activity of PP1 is not required for pRB binding. The significance of this finding with respect to the functional importance of this interaction is discussed.  (+info)

Structure-based thermodynamic analysis of the dissociation of protein phosphatase-1 catalytic subunit and microcystin-LR docked complexes. (22/396)

The relationship between the structure of a free ligand in solution and the structure of its bound form in a complex is of great importance to the understanding of the energetics and mechanism of molecular recognition and complex formation. In this study, we use a structure-based thermodynamic approach to study the dissociation of the complex between the toxin microcystin-LR (MLR) and the catalytic domain of protein phosphatase-1 (PP-1c) for which the crystal structure of the complex is known. We have calculated the thermodynamic parameters (enthalpy, entropy, heat capacity, and free energy) for the dissociation of the complex from its X-ray structure and found the calculated dissociation constant (4.0 x 10(-11)) to be in excellent agreement with the reported inhibitory constant (3.9 x 10(-11)). We have also calculated the thermodynamic parameters for the dissociation of 47 PP-1c:MLR complexes generated by docking an ensemble of NMR solution structures of MLR onto the crystal structure of PP-1c. In general, we observe that the lower the root-mean-square deviation (RMSD) of the docked complex (compared to the X-ray complex) the closer its free energy of dissociation (deltaGd(o)) is to that calculated from the X-ray complex. On the other hand, we note a significant scatter between the deltaGd(o) and the RMSD of the docked complexes. We have identified a group of seven docked complexes with deltaGd(o) values very close to the one calculated from the X-ray complex but with significantly dissimilar structures. The analysis of the corresponding enthalpy and entropy of dissociation shows a compensation effect suggesting that MLR molecules with significant structural variability can bind PP-1c and that substantial conformational flexibility in the PP-1c:MLR complex may exist in solution.  (+info)

Phosphorylation of the nuclear transport machinery down-regulates nuclear protein import in vitro. (23/396)

We have examined whether signal-mediated nucleocytoplasmic transport can be regulated by phosphorylation of the nuclear transport machinery. Using digitonin-permeabilized cell assays to measure nuclear import and export, we found that the phosphatase inhibitors okadaic acid and microcystin inhibit transport mediated by the import receptors importin beta and transportin, but not by the export receptor CRM1. Several lines of evidence, including the finding that transport inhibition is partially reversed by the broad specificity protein kinase inhibitor staurosporine, indicate that transport inhibition is due to elevated phosphorylation of a component of the nuclear transport machinery. The kinases and phosphatases involved in this regulation are present in the permeabilized cells. A phosphorylation-sensitive component of the nuclear transport machinery also is present in permeabilized cells and is most likely a component of the nuclear pore complex. Substrate binding by the importin alpha.beta complex and the association of the complex with the nucleoporins Nup358/RanBP2 and Nup153 are not affected by phosphatase inhibitors, suggesting that transport inhibition by protein phosphorylation does not involve these steps. These results suggest that cells have mechanisms to negatively regulate entire nuclear transport pathways, thus providing a means to globally control cellular activity through effects on nucleocytoplasmic trafficking.  (+info)

UB-165: a novel nicotinic agonist with subtype selectivity implicates the alpha4beta2* subtype in the modulation of dopamine release from rat striatal synaptosomes. (24/396)

Presynaptic nicotinic acetylcholine receptors (nAChRs) on striatal synaptosomes stimulate dopamine release. Partial inhibition by the alpha3beta2-selective alpha-conotoxin-MII indicates heterogeneity of presynaptic nAChRs on dopamine terminals. We have used this alpha-conotoxin and UB-165, a novel hybrid of epibatidine and anatoxin-a, to address the hypothesis that the alpha-conotoxin-MII-insensitive subtype is composed of alpha4 and beta2 subunits. UB-165 shows intermediate potency, compared with the parent molecules, at alpha4beta2* and alpha3-containing binding sites, and resembles epibatidine in its high discrimination of these sites over alpha7-type and muscle binding sites. (+/-)-Epibatidine, (+/-)-anatoxin-a, and (+/-)-UB-165 stimulated [(3)H]-dopamine release from striatal synaptosomes with EC(50) values of 2.4, 134, and 88 nM, and relative efficacies of 1:0.4:0.2, respectively. alpha-Conotoxin-MII inhibited release evoked by these agonists by 48, 56, and 88%, respectively, suggesting that (+/-)-UB-165 is a very poor agonist at the alpha-conotoxin-MII-insensitive nAChR subtype. In assays of (86)Rb(+) efflux from thalamic synaptosomes, a model of an alpha4beta2* nAChR response, (+/-)-UB-165 was a very weak partial agonist; the low efficacy of (+/-)-UB-165 at alpha4beta2 nAChR was confirmed in Xenopus oocytes expressing various combinations of human nAChR subunits. In contrast, (+/-)-UB-165 and (+/-)-anatoxin-a were similarly efficacious and similarly sensitive to alpha-conotoxin-MII in increasing intracellular Ca(2+) in SH-SY5Y cells, a functional assay for native alpha3-containing nAChR. These data support the involvement of alpha4beta2* nAChR in the presynaptic modulation of striatal dopamine release and illustrate the utility of exploiting a novel partial agonist, together with a selective antagonist, to dissect the functional roles of nAChR subtypes in the brain.  (+info)