Loading...
(1/1198) Identification and characterization of the human orthologue of yeast Pex14p.

Pex14p is a central component of the peroxisomal protein import machinery, which has been suggested to provide the point of convergence for PTS1- and PTS2-dependent protein import in yeast cells. Here we describe the identification of a human peroxisome-associated protein (HsPex14p) which shows significant similarity to the yeast Pex14p. HsPex14p is a carbonate-resistant peroxisomal membrane protein with its C terminus exposed to the cytosol. The N terminus of the protein is not accessible to exogenously added antibodies or protease and thus might protrude into the peroxisomal lumen. HsPex14p overexpression leads to the decoration of tubular structures and mislocalization of peroxisomal catalase to the cytosol. HsPex14p binds the cytosolic receptor for the peroxisomal targeting signal 1 (PTS1), a result consistent with a function as a membrane receptor in peroxisomal protein import. Homo-oligomerization of HsPex14p or interaction of the protein with the PTS2-receptor or HsPex13p was not observed. This distinguishes the human Pex14p from its counterpart in yeast cells and thus supports recent data suggesting that not all aspects of peroxisomal protein import are conserved between yeasts and humans. The role of HsPex14p in mammalian peroxisome biogenesis makes HsPEX14 a candidate PBD gene for being responsible for an unrecognized complementation group of human peroxisome biogenesis disorders.  (+info)

(2/1198) Isocitrate lyase of Ashbya gossypii--transcriptional regulation and peroxisomal localization.

The isocitrate lyase-encoding gene AgICL1 from the filamentous hemiascomycete Ashbya gossypii was isolated by heterologous complementation of a Saccharomyces cerevisiae icl1d mutant. The open reading frame of 1680 bp encoded a protein of 560 amino acids with a calculated molecular weight of 62584. Disruption of the AgICL1 gene led to complete loss of AgIcl1p activity and inability to grow on oleic acid as sole carbon source. Compartmentation of AgIcl1p in peroxisomes was demonstrated both by Percoll density gradient centrifugation and by immunogold labeling of ultrathin sections using specific antibodies. This fitted with the peroxisomal targeting signal AKL predicted from the C-terminal DNA sequence. Northern blot analysis with mycelium grown on different carbon sources as well as AgICL1 promoter replacement with the constitutive AgTEF promoter revealed a regulation at the transcriptional level. AgICL1 was subject to glucose repression, derepressed by glycerol, partially induced by the C2 compounds ethanol and acetate, and fully induced by soybean oil.  (+info)

(3/1198) Immunophilins, Refsum disease, and lupus nephritis: the peroxisomal enzyme phytanoyl-COA alpha-hydroxylase is a new FKBP-associated protein.

FKBP52 (FKBP59, FKBP4) is a "macro" immunophilin that, although sharing high structural and functional homologies in its amino-terminal domain with FKBP12 (FKBP1), does not have immunosuppressant activity when complexed with FK506, unlike FKBP12. To investigate the physiological function of FKBP52, we used the yeast two-hybrid system as an approach to find its potential protein partners and, from that, its cellular role. This methodology, which already has allowed us to find the FK506-binding protein (FKBP)-associated protein FAP48, also led to the detection of another FKBP-associated protein. Determination of the sequence of this protein permitted its identification as phytanoyl-CoA alpha-hydroxylase (PAHX), a peroxisomal enzyme that so far was unknown as an FKBP-associated protein. Inactivation of this enzyme is responsible for Refsum disease in humans. The protein also corresponds to the mouse protein LN1, which could be involved in the progress of lupus nephritis. We show here that PAHX has the physical capacity to interact with the FKBP12-like domain of FKBP52, but not with FKBP12, suggesting that it is a particular and specific target of FKBP52. Whereas the binding of calcineurin to FKBP12 is potentiated by FK506, the specific association of PAHX and FKBP52 is maintained in the presence of FK506. This observation suggests that PAHX is a serious candidate for studying the cellular signaling pathway(s) involving FKBP52 in the presence of immunosuppressant drugs.  (+info)

(4/1198) Comparison of the stability and substrate specificity of purified peroxisomal 3-oxoacyl-CoA thiolases A and B from rat liver.

The specific activities and substrate specificities of 3-oxoacyl-CoA thiolase A (thiolase A) purified from normal rat liver peroxisomes and 3-oxoacyl-CoA thiolase B (thiolase B) isolated from livers of rats treated with the peroxisome proliferator clofibrate were virtually identical. The enzymes could be distinguished by their N-terminal amino acid sequences, their isoelectric points and their stability, the latter being higher for thiolase A. Contrary to thiolase B, which showed a marked cold lability in the presence of KCl by dissociating into monomers with poor activity, thiolase A retained its full activity and its homodimeric structure under these conditions.  (+info)

(5/1198) Preventive effects of dehydroepiandrosterone acetate on the fatty liver induced by orotic acid in male rats.

Preventive effects of dehydroepiandrosteone acetate (DHEA-A) and clofibrate (positive control substance) on the fatty liver induced by orotic acid (OA) were examined on the male Sprague-Dawley rats fed a high sucrose based diet containing 1% OA and this diet further mixed with 0.5% DHEA-A or 0.5% clofibrate for 2 weeks. Numerous lipid droplets were observed in the hepatocytes of the rats treated with OA alone, but not in those treated with DHEA-A or clofibrate. In comparison to the group with OA alone, the DHEA-A or clofibrate treated rats showed a larger relative liver weight (to body weight) which was accompanied by increased peroxisomes in the hepatocytes. These results indicate that DHEA-A, as well as clofibrate, may prevent OA-induced fatty liver.  (+info)

(6/1198) Detecting patterns of protein distribution and gene expression in silico.

Most biological information is contained within gene and genome sequences. However, current methods for analyzing these data are limited primarily to the prediction of coding regions and identification of sequence similarities. We have developed a computer algorithm, CoSMoS (for context sensitive motif searches), which adds context sensitivity to sequence motif searches. CoSMoS was challenged to identify genes encoding peroxisome-associated and oleate-induced genes in the yeast Saccharomyces cerevisiae. Specifically, we searched for genes capable of encoding proteins with a type 1 or type 2 peroxisomal targeting signal and for genes containing the oleate-response element, a cis-acting element common to fatty acid-regulated genes. CoSMoS successfully identified 7 of 8 known PTS-containing peroxisomal proteins and 13 of 14 known oleate-regulated genes. More importantly, CoSMoS identified an additional 18 candidate peroxisomal proteins and 300 candidate oleate-regulated genes. Preliminary localization studies suggest that these include at least 10 previously unknown peroxisomal proteins. Phenotypic studies of selected gene disruption mutants suggests that several of these new peroxisomal proteins play roles in growth on fatty acids, one is involved in peroxisome biogenesis and at least two are required for synthesis of lysine, a heretofore unrecognized role for peroxisomes. These results expand our understanding of peroxisome content and function, demonstrate the utility of CoSMoS for context-sensitive motif scanning, and point to the benefits of improved in silico genome analysis.  (+info)

(7/1198) High-affinity binding of very-long-chain fatty acyl-CoA esters to the peroxisomal non-specific lipid-transfer protein (sterol carrier protein-2).

Binding of fluorescent fatty acids to bovine liver non-specific lipid-transfer protein (nsL-TP) was assessed by measuring fluorescence resonance energy transfer (FRET) between the single tryptophan residue of nsL-TP and the fluorophore. Upon addition of pyrene dodecanoic acid (Pyr-C12) and cis-parinaric acid to nsL-TP, FRET was observed indicating that these fatty acids were accommodated in the lipid binding site closely positioned to the tryptophan residue. Substantial binding was observed only when these fatty acids were presented in the monomeric form complexed to beta-cyclodextrin. As shown by time-resolved fluorescence measurements, translocation of Pyr-C12 from the Pyr-C12-beta-cyclodextrin complex to nsL-TP changed dramatically the direct molecular environment of the pyrene moiety: i.e. the fluorescence lifetime of the directly excited pyrene increased at least by 25% and a distinct rotational correlation time of 7 ns was observed. In order to evaluate the affinity of nsL-TP for intermediates of the beta-oxidation pathway, a binding assay was developed based on the ability of fatty acyl derivatives to displace Pyr-C12 from the lipid binding site as reflected by the reduction of FRET. Hexadecanoyl-CoA and 2-hexadecenoyl-CoA were found to bind readily to nsL-TP, whereas 3-hydroxyhexadecanoyl-CoA and 3-ketohexadecanoyl-CoA bound poorly. The highest affinities were observed for the very-long-chain fatty acyl-CoA esters (24:0-CoA, 26:0-CoA) and their enoyl derivatives (24:1-CoA, 26:1-CoA). Binding of non-esterified hexadecanoic acid and tetracosanoic acid (24:0) was negligible.  (+info)

(8/1198) Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2-dependent protein import into peroxisomes.

Pex13p is the putative docking protein for peroxisomal targeting signal 1 (PTS1)-dependent protein import into peroxisomes. Pex14p interacts with both the PTS1- and PTS2-receptor and may represent the point of convergence of the PTS1- and PTS2-dependent protein import pathways. We report the involvement of Pex13p in peroxisomal import of PTS2-containing proteins. Like Pex14p, Pex13p not only interacts with the PTS1-receptor Pex5p, but also with the PTS2-receptor Pex7p; however, this association may be direct or indirect. In support of distinct peroxisomal binding sites for Pex7p, the Pex7p/Pex13p and Pex7p/ Pex14p complexes can form independently. Genetic evidence for the interaction of Pex7p and Pex13p is provided by the observation that overexpression of Pex13p suppresses a loss of function mutant of Pex7p. Accordingly, we conclude that Pex7p and Pex13p functionally interact during PTS2-dependent protein import into peroxisomes. NH2-terminal regions of Pex13p are required for its interaction with the PTS2-receptor while the COOH-terminal SH3 domain alone is sufficient to mediate its interaction with the PTS1-receptor. Reinvestigation of the topology revealed both termini of Pex13p to be oriented towards the cytosol. We also found Pex13p to be required for peroxisomal association of Pex14p, yet the SH3 domain of Pex13p may not provide the only binding site for Pex14p at the peroxisomal membrane.  (+info)