Isolated rabbit enterocytes as a model cell system for investigations of chylomicron assembly and secretion. (25/2247)

A method is described for the isolation of viable enterocytes from rabbit small intestine. The procedure can also be used to isolate populations of epithelial cells from the crypt/villus gradient. The isolated enterocytes synthesized and secreted apoB-48 and triacylglycerol in particles of the density of chylomicrons. Secretion was stimulated by addition of bile salt/lipid micelles. Pulse-chase experiments demonstrated that newly synthesized apoB-48 is degraded intracellularly and that degradation is inhibited by provision of lipid micelles, suggesting that regulation of chylomicron assembly and secretion is broadly similar to that of very low density lipoprotein assembly in hepatocytes. This procedure for preparation of isolated enterocytes will provide a useful model system for investigation of the molecular details of chylomicron assembly.  (+info)

Roles of asp126 and asp156 in the enzyme function of sphingomyelinase from Bacillus cereus. (26/2247)

To elucidate the roles of conserved Asp residues of Bacillus cereus sphingomyelinase (SMase) in the kinetic and binding properties of the enzyme toward various substrates and Mg2+, the kinetic data on mutant SMases (D126G and D156G) were compared with those of wild type (WT) enzyme. The stereoselectivity of the enzyme in the hydrolysis of monodispersed short-chain sphingomyelin (SM) analogs and the binding of Mg2+ to the enzyme were not affected by the replacement of Asp126 or Asp156. The pH-dependence curves of kinetic parameters (1/Km and kcat) for D156G-catalyzed hydrolysis of micellar SM mixed with Triton X-100 (1:10) and of micellar 2-hexadecanoylamino-4-nitrophenylphosphocholine (HNP) were similar in shape to those for WT enzyme-catalyzed hydrolysis. On the other hand, the curves for D126G lacked the transition observed for D156G and WT enzymes. Comparison of the values and the shape of pH-dependence curves of kinetic parameters indicated that Asp126 of WT SMase enhances the enzyme's catalytic activity toward both substrates and its binding of HNP but not SM. The deprotonation of Asp126 enhances the substrate binding and slightly suppresses the catalytic activity toward both substrates. Asp156 of WT SMase acts to decrease the binding of both substrates and the catalytic activity to HNP but not SM. From the present study and the predicted three-dimensional structure of B. cereus SMase, Asp126 was thought to be located close to the active site, and its ionization was shown to affect the catalytic activity and substrate binding.  (+info)

Micellar catalysis for oxidation of nitric oxide (NO) in the multi-phase systems in vivo. (27/2247)

The equation of the dependence of the third-order reaction acceleration due to concentrating the reagents in a small volume of the hydrophobic phase on the partition coefficients of reagents (Q) and on the lipophilic phase fraction (x), [k(app)/ k2 = H(Q(NO),Q(O2),x)] was analyzed. It was demonstrated that the numeric value of dH/dx at x-->0 could not be used in order to calculate the efficiency of catalysis from the experimental data. It was shown that, unlike in two-phase systems (with an aqueous and a hydrophobic phase), the dependence of H on Q in multi-phase systems, that include all in vivo systems, is different. The multiple phase state of the systems has a determining role for a regulation of NO-dependent processes and in the realization of conditions of 'NO catastrophes'.  (+info)

Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. (28/2247)

Using elicitins, proteins secreted by some phytopathogenic Oomycetes (Phytophthora) known to be able to transfer sterols between phospholipid vesicles, the transfer of sterols between micelles, liposomes and biological membranes was studied. Firstly, a simple fluorometric method to screen the sterol-carrier capacity of proteins, avoiding the preparation of sterol-containing phospholipidic vesicles, is proposed. The transfer of sterols between DHE micelles (donor) and stigmasterol or cholesterol micelles (acceptor) was directly measured, as the increase in DHE fluorescence signal. The results obtained with this rapid and easy method lead to the same conclusions as those previously reported, using fluorescence polarization of a mixture of donor and acceptor phospholipid vesicles, prepared in the presence of different sterols. Therefore, the micelles method can be useful to screen proteins for their sterol carrier activity. Secondly, elicitins are shown to trap sterols from purified plant plasma membranes and to transfer sterols from micelles to these biological membranes. This property should contribute to understand the molecular mechanism involved in sterol uptake by Phytophthora. It opens new perspectives concerning the role of such proteins in plant-microorganism interactions.  (+info)

Activation of phospholipase C delta1 through C2 domain by a Ca(2+)-enzyme-phosphatidylserine ternary complex. (29/2247)

The concentration of free Ca(2+) and the composition of nonsubstrate phospholipids profoundly affect the activity of phospholipase C delta1 (PLCdelta1). The rate of PLCdelta1 hydrolysis of phosphatidylinositol 4,5-bisphosphate was stimulated 20-fold by phosphatidylserine (PS), 4-fold by phosphatidic acid (PA), and not at all by phosphatidylethanolamine or phosphatidylcholine (PC). PS reduced the Ca(2+) concentration required for half-maximal activation of PLCdelta1 from 5.4 to 0.5 microM. In the presence of Ca(2+), PLCdelta1 specifically bound to PS/PC but not to PA/PC vesicles in a dose-dependent and saturable manner. Ca(2+) also bound to PLCdelta1 and required the presence of PS/PC vesicles but not PA/PC vesicles. The free Ca(2+) concentration required for half-maximal Ca(2+) binding was estimated to be 8 microM. Surface dilution kinetic analysis revealed that the K(m) was reduced 20-fold by the presence of 25 mol % PS, whereas V(max) and K(d) were unaffected. Deletion of amino acid residues 646-654 from the C2 domain of PLCdelta1 impaired Ca(2+) binding and reduced its stimulation and binding by PS. Taken together, the results suggest that the formation of an enzyme-Ca(2+)-PS ternary complex through the C2 domain increases the affinity for substrate and consequently leads to enzyme activation.  (+info)

31P NMR first spectral moment study of the partial magnetic orientation of phospholipid membranes. (30/2247)

Structural data can be obtained on proteins inserted in magnetically oriented phospholipid membranes such as bicelles, which are most often made of a mixture of long and short chain phosphatidylcholine. Possible shapes for these magnetically oriented membranes have been postulated in the literature, such as discoidal structures with a thickness of one bilayer and with the short acyl chain phosphatidylcholine on the edges. In the present paper, a geometrical study of these oriented structures is done to determine the validity of this model. The method used is based on the determination of the first spectral moment of solid-state (31)P nuclear magnetic resonance spectra. From this first moment, an order parameter is defined that allows a quantitative analysis of partially oriented spectra. The validity of this method is demonstrated in the present study for oriented samples made of DMPC, DMPC:DHPC, DMPC:DHPC:gramicidin A and adriamycin:cardiolipin.  (+info)

A method for determining transmembrane helix association and orientation in detergent micelles using small angle x-ray scattering. (31/2247)

Solution small angle x-ray scattering can be used to study the association of transmembrane proteins solubilized in detergent micelles. We have used the alpha-helical transmembrane domain of the human erythrocyte glycophorin A (GpA) fused to the carboxyl terminus of monomeric staphylococcal nuclease (SN/GpA) as a model system for study. By matching the average electron density of the detergent micelles to that of the buffer solution, the micelle contribution to the small angle scattering vanishes, and the molecular weight and the radius of gyration of the proteins can be determined. SN/GpA has been found to dimerize in a zwitterionic detergent micelle, N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB), whose average electron density naturally matches the electron density of an aqueous buffer. The dimerization occurs through the transmembrane domains of GpA. With the aid of the nuclease domain scattering, the orientation of the helices within a dimer can be determined to be parallel by radius of gyration analysis. The association constant of a mutant (G83I) that weakens the GpA dimerization has been determined to be 24 microM in the DDMAB environment. The experimental methods established here could be used to apply solution small angle x-ray scattering to studying the association and interactions of other membrane proteins.  (+info)

Pentacoordinate hemin derivatives in sodium dodecyl sulfate micelles: model systems for the assignment of the fifth ligand in ferric heme proteins. (32/2247)

Ferric iron protoporhyrin IX derivatives in SDS micelles have been investigated by means of visible absorption, resonance Raman, and XANES spectroscopies to establish specific correlations between the marker bands of the pentacoordinate derivatives obtained from the three different techniques. Hydroxyl and 1,2-dimethyl imidazole coordinated hemins display the typical spectroscopic marker bands of a pentacoordinate high-spin ferric iron derivative in both Raman and XANES spectra. In turn, the optical absorption spectra of these two derivatives are very different. This difference is in line with the assignment of hydroxyl as the fifth coordination ligand to free hemin in SDS micelles, as demonstrated by the isotopic shift of the frequency of Fe-OH bond with H(2)(18)O. The present assignments are relevant to the identification of the coordination state and the nature of the fifth ligand in ferric heme proteins.  (+info)