Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. (25/44874)

Transgenic mice overexpressing different forms of amyloid precursor protein (APP), i.e. wild type or clinical mutants, displayed an essentially comparable early phenotype in terms of behavior, differential glutamatergic responses, deficits in maintenance of long term potentiation, and premature death. The cognitive impairment, demonstrated in F1 hybrids of the different APP transgenic lines, was significantly different from nontransgenic littermates as early as 3 months of age. Biochemical analysis of secreted and membrane-bound APP, C-terminal "stubs," and Abeta(40) and Abeta(42) peptides in brain indicated that no single intermediate can be responsible for the complex of phenotypic dysfunctions. As expected, the Abeta(42) levels were most prominent in APP/London transgenic mice and correlated directly with the formation of amyloid plaques in older mice of this line. Plaques were associated with immunoreactivity for hyperphosphorylated tau, eventually signaling some form of tau pathology. In conclusion, the different APP transgenic mouse lines studied display cognitive deficits and phenotypic traits early in life that dissociated in time from the formation of amyloid plaques and will be good models for both early and late neuropathological and clinical aspects of Alzheimer's disease.  (+info)

Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volume-excluding 70-kDa dextran. Effects of non-s hemoglobins and inhibitors. (26/44874)

Earlier observations indicated that volume exclusion by admixed non-hemoglobin macromolecules lowered the polymer solubility ("Csat") of deoxyhemoglobin (Hb) S, presumably by increasing its activity. In view of the potential usefulness of these observations for in vitro studies of sickling-related polymerization, we examined the ultrastructure, solubility behavior, and phase distributions of deoxygenated mixtures of Hb S with 70-kDa dextran, a relatively inert, low ionic strength space-filling macromolecule. Increasing admixture of dextran progressively lowered the Csat of deoxyHb S. With 12 g/dl dextran, a 5-fold decrease in apparent Csat ("dextran-Csat") was obtained together with acceptable sensitivity and proportionality with the standard Csat when assessing the effects of non-S Hb admixtures (A, C, and F) or polymerization inhibitors (alkylureas or phenylalanine). The volume fraction of dextran excluding Hb was 70-75% of total deoxyHb-dextran (12 g/dl) volumes. Electron microscopy showed polymer fibers and fiber-to-crystal transitions indistinguishable from those formed without dextran. Thus when Hb quantities are limited, as with genetically engineered recombinant Hbs or transgenic sickle mice, the dextran-Csat provides convenient and reliable screening of effects of Hb S modifications on polymerization under near-physiological conditions, avoiding problems of high ionic strength.  (+info)

Dynamics of plaque formation in Alzheimer's disease. (27/44874)

Plaques that form in the brains of Alzheimer patients are made of deposits of the amyloid-beta peptide. We analyze the time evolution of amyloid-beta deposition in immunostained brain slices from transgenic mice. We find that amyloid-beta deposits appear in clusters whose characteristic size increases from 14 microm in 8-month-old mice to 22 microm in 12-month-old mice. We show that the clustering has implications for the biological growth of amyloid-beta by presenting a growth model that accounts for the experimentally observed structure of individual deposits and predicts the formation of clusters of deposits and their time evolution.  (+info)

Gene expression and chromatin organization during mouse oocyte growth. (28/44874)

Mouse oocytes can be classified according to their chromatin organization and the presence [surrounded nucleolus (SN) oocytes] or absence [nonsurrounded nucleolus (NSN) oocytes] of a ring of Hoechst-positive chromatin around the nucleolus. Following fertilization only SN oocytes are able to develop beyond the two-cell stage. These studies indicate a correlation between SN and NSN chromatin organization and the developmental competence of the female gamete, which may depend on gene expression. In the present study, we have used the HSP70.1Luc transgene (murine HSP70.1 promoter + reporter gene firefly luciferase) to analyze gene expression in oocytes isolated from ovaries of 2-day- to 13-week-old females. Luciferase was assayed on oocytes after classification as SN or NSN type. Our data show that SN oocytes always exhibit a higher level of luciferase activity, demonstrating a higher gene expression in this category. Only after meiotic resumption, metaphase II oocytes derived from NSN or SN oocytes acquire the same level of transgene expression. We suggest that the limited availability of transcripts and corresponding proteins, excluded from the cytoplasm until GVBD in NSN oocytes, could explain why these oocytes have a lower ability to sustain embryonic development beyond the two-cell stage at which major zygotic transcription occurs. With this study we have furthered our knowledge of epigenetic regulation of gene expression in oogenesis.  (+info)

WNT signaling in the control of hair growth and structure. (29/44874)

Characterization of the molecular pathways controlling differentiation and proliferation in mammalian hair follicles is central to our understanding of the regulation of normal hair growth, the basis of hereditary hair loss diseases, and the origin of follicle-based tumors. We demonstrate that the proto-oncogene Wnt3, which encodes a secreted paracrine signaling molecule, is expressed in developing and mature hair follicles and that its overexpression in transgenic mouse skin causes a short-hair phenotype due to altered differentiation of hair shaft precursor cells, and cyclical balding resulting from hair shaft structural defects and associated with an abnormal profile of protein expression in the hair shaft. A putative effector molecule for WNT3 signaling, the cytoplasmic protein Dishevelled 2 (DVL2), is normally present at high levels in a subset of cells in the outer root sheath and in precursor cells of the hair shaft cortex and cuticle which lie immediately adjacent to Wnt3-expressing cells. Overexpression of Dvl2 in the outer root sheath mimics the short-hair phenotype produced by overexpression of Wnt3, supporting the hypothesis that Wnt3 and Dvl2 have the potential to act in the same pathway in the regulation of hair growth. These experiments demonstrate a previously unrecognized role for WNT signaling in the control of hair growth and structure, as well as presenting the first example of a mammalian phenotype resulting from overexpression of a Dvl gene and providing an accessible in vivo system for analysis of mammalian WNT signaling pathways.  (+info)

A novel epitope for the specific detection of exogenous prion proteins in transgenic mice and transfected murine cell lines. (30/44874)

Prion diseases are closely linked to the conversion of host-encoded cellular prion protein (PrPC) into its pathological isoform (PrPSc). PrP conversion experiments in scrapie infected tissue culture cells, transgenic mice, and cell-free systems usually require unique epitopes and corresponding monoclonal antibodies (MAbs) for the immunological discrimination of exogenously introduced and endogenous PrP compounds (e.g., MAb 3F4, which is directed to an epitope on hamster and human but not on murine PrP). In the current work, we characterize a novel MAb designated L42 that reacts to PrP of a variety of species, including cattle, sheep, goat, dog, human, cat, mink, rabbit, and guinea pig, but does not bind to mouse, hamster, and rat PrP. Therefore, MAb L42 may allow future in vitro conversion and transgenic studies on PrPs of the former species. The MAb L42 epitope on PrPC includes a tyrosine residue at position 144, whereas mouse, rat, and hamster PrPs incorporate tryptophane at this site. To verify this observation, we generated PrP expression vectors coding for authentic or mutated murine PrPCs (i.e., codon 144 encoding tyrosine instead of tryptophan). After transfection into neuroblastoma cells, MAb L42 did not react with immunoblotted wild-type murine PrPC, whereas L42 epitope-tagged murine PrPC was strongly recognized. Immunoblot and fluorescence-activated cell sorting data revealed that tagged PrPC was correctly posttranslationally processed and translocated to the cell surface.  (+info)

Cytotoxic T lymphocytes to an unmutated tumor rejection antigen P1A: normal development but restrained effector function in vivo. (31/44874)

Unmutated tumor antigens are chosen as primary candidates for tumor vaccine because of their expression on multiple lineages of tumors. A critical issue is whether unmutated tumor antigens are expressed in normal cells, and if so, whether such expression imposes special restrictions on cytotoxic T lymphocyte (CTL) responses. In this study, we use a transgenic approach to study the development and effector function of T cells specific for P1A, a prototypical unmutated tumor antigen. We report here that although P1A is expressed at low levels in normal tissues, including lymphoid tissues, the P1A-specific transgenic T cells develop normally and remain highly responsive to the P1A antigen. The fact that transgenic expression of P1A antigen in the thymus induces T cell clonal deletion demonstrates that normal hematopoietic cells can process and present the P1A antigen and that P1A-specific T cells are susceptible to clonal deletion. By inference, P1A-specific T cells must have escaped clonal deletion due to low expression of P1A in the thymus. Interestingly, despite the fact that an overwhelming majority of T cells in the T cell receptor for antigen (TCR)-transgenic mice are specific for P1A, these mice are no more resistant to a P1A-expressing plasmocytoma than nontransgenic littermates. Moreover, when the same TCR-transgenic mice were challenged simultaneously with B7-1(+) and B7-1(-) tumors, only B7-1(+) tumors were rejected. Therefore, even though P1A can be a tumor rejection antigen, the effector function of P1A-specific CTL is restrained in vivo. These results have important implications for the strategy of tumor immunotherapy.  (+info)

Selective eosinophil transendothelial migration triggered by eotaxin via modulation of Mac-1/ICAM-1 and VLA-4/VCAM-1 interactions. (32/44874)

We have recently cloned eotaxin, a highly efficacious eosinophilic chemokine involved in the development of lung eosinophilia during allergic inflammatory reactions. To understand more precisely how eotaxin facilitates the specific migration of eosinophils, we have studied which adhesion receptors are essential for eotaxin action both in vivo and in vitro. Experiments using mice genetically deficient in adhesion receptors demonstrated that molecules previously reported to be involved in both leukocyte tethering/rolling (P-selectin and E-selectin) and in sticking/ transmigration (ICAM-1 and VCAM-1) are required for eotaxin action in vivo. To further elucidate the mechanism(s) involved in this process, we have used an in vitro transendothelial chemotaxis model. mAb neutralization studies performed in this system suggest that the integrins Mac-1 (CD11b/18), VLA-4 (alpha4beta1) and LFA-1 (CD11a/18) are involved in the transendothelial chemotaxis of eosinophils to eotaxin. Accordingly, the expression of these integrins on eosinophils is elevated by direct action of this chemokine in a concentration-dependent manner. Taken together, our results suggest that eotaxin-induced eosinophil transendothelial migration in vivo and in vitro relies on Mac-1/ICAM-1 and VLA-4NCAM-1 interactions, the latter ones becoming more relevant at later time points of the eotaxin-induced recruitment process.  (+info)