Loading...
(1/17429) Classification of human colorectal adenocarcinoma cell lines.

Eleven human colorectal adenocarcinoma cell lines established in this laboratory were classified into three groups based on morphological features (light and electron microscopy), modal chromosome number, and ability to synthesize carcinoembryonic antigen (CEA). Group 1 cell lines contained both dedifferentiated and differentiating cells growing in tight clusters or islands of epithelium-like cells; their modal chromosome number was about 47, and they synthesized small to moderate amounts of CEA. Group 2 cell lines were more dedifferentiated, were hyperdiploid, and synthesized small amounts of CEA. Group 3 cell lines were morphologically similar to those of Group 1 by light microscopy. They differed ultrastructurally by containing microvesicular bodies; the modal chromosome number varied from hyperdiploid to hypertriploid or they had bimodal populations of hypodiploid and hypertriploid cells, and they synthesized relatively large amounts of CEA. No correlation could be found between Broder's grade or Duke's classification of the original tumor and modal chromosome number or ability to synthesize CEA. These findings support Nowell's hypothesis that the stem line is different for each solid tumor, which makes it difficult to relate chromosomal changes to the initiation of the neoplastic state.  (+info)

(2/17429) Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis.

The Met tyrosine kinase - the HGF receptor - induces cell transformation and metastasis when constitutively activated. Met signaling is mediated by phosphorylation of two carboxy-terminal tyrosines which act as docking sites for a number of SH2-containing molecules. These include Grb2 and p85 which couple the receptor, respectively, with Ras and PI 3-kinase. We previously showed that a Met mutant designed to obtain preferential coupling with Grb2 (Met2xGrb2) is permissive for motility, increases transformation, but - surprisingly - is impaired in causing invasion and metastasis. In this work we used Met mutants optimized for binding either p85 alone (Met2xPI3K) or p85 and Grb2 (MetPI3K/Grb2) to evaluate the relative importance of Ras and PI 3-kinase as downstream effectors of Met. Met2xPI3K was competent in eliciting motility, but not transformation, invasion, or metastasis. Conversely, MetP13K/Grb2 induced motility, transformation, invasion and metastasis as efficiently as wild type Met. Furthermore, the expression of constitutively active PI 3-kinase in cells transformed by the Met2xGrb2 mutant, fully rescued their ability to invade and metastasize. These data point to a central role for PI 3-kinase in Met-mediated invasiveness, and indicate that simultaneous activation of Ras and PI 3-kinase is required to unleash the Met metastatic potential.  (+info)

(3/17429) 11q23.1 and 11q25-qter YACs suppress tumour growth in vivo.

Frequent allelic deletion at chromosome 11q22-q23.1 has been described in breast cancer and a number of other malignancies, suggesting putative tumour suppressor gene(s) within the approximately 8 Mb deleted region. In addition, we recently described another locus, at the 11q25-qter region, frequently deleted in breast cancer, suggesting additional tumour suppressor gene(s) in this approximately 2 Mb deleted region. An 11q YAC contig was accessed and three YACs, one containing the candidate gene ATM at 11q23.1, and two contiguous YACs (overlapping for approximately 400-600 kb) overlying most of the 11q25 deleted region, were retrofitted with a G418 resistance marker and transfected into murine A9 fibrosarcoma cells. Selected A9 transfectant clones (and control untransfected and 'irrelevant' alphoid YAC transfectant A9 clones) were assayed for in vivo tumorigenicity in athymic female Balb c-nu/nu mice. All the 11q YAC transfectant clones demonstrated significant tumour suppression compared to the control untransfected and 'irrelevant' YAC transfected A9 cells. These results define two discrete tumour suppressor loci on chromosome 11q by functional complementation, one to a approximately 1.2 Mb region on 11q23.1 (containing the ATM locus) and another to a approximately 400-600 kb subterminal region on 11q25-qter.  (+info)

(4/17429) The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells.

We have previously found that epidermal growth factor (EGF) mediates growth through the Jun N-terminal kinase/stress-activated kinase (JNK/SAPK) pathway in A549 human lung carcinoma cells. As observed here, EGF treatment also greatly enhances the tumorigenicity of A549 cells, suggesting an important role for JNK in cancer cell growth (F. Bost, R. McKay, N. Dean, and D. Mercola, J. Biol. Chem. 272:33422-33429, 1997). Several isoforms families of JNK, JNK1, JNK2, and JNK3, have been isolated; they arise from alternative splicing of three different genes and have distinct substrate binding properties. Here we have used specific phosphorothioate oligonucleotides targeted against the two major isoforms, JNK1 and JNK2, to discriminate their roles in EGF-induced transformation. Multiple antisense sequences have been screened, and two high-affinity and specific candidates have been identified. Antisense JNK1 eliminated steady-state mRNA and JNK1 protein expression with a 50% effective concentration (EC50) of <0.1 microM but did not alter JNK2 mRNA or protein levels. Conversely, antisense JNK2 specifically eliminated JNK2 steady-state mRNA and protein expression with an EC50 of 0.1 microM. Antisense JNK1 and antisense JNK2 inhibited by 40 and 70%, respectively, EGF-induced total JNK activity, whereas sense and scrambled-sequence control oligonucleotides had no effect. The elimination of mRNA, protein, and JNK activities lasted 48 and 72 h following a single Lipofectin treatment with antisense JNK1 and JNK2, respectively, indicating sufficient duration for examining the impact of specific elimination on the phenotype. Direct proliferation assays demonstrated that antisense JNK2 inhibited EGF-induced doubling of growth as well as the combination of active antisense oligonucleotides did. EGF treatment also induced colony formation in soft agar. This effect was completely inhibited by antisense JNK2 and combined-antisense treatment but not altered by antisense JNK1 alone. These results show that EGF doubles the proliferation (growth in soft agar as well as tumorigenicity in athymic mice) of A549 lung carcinoma cells and that the JNK2 isoform but not JNK1 is utilized for mediating the effects of EGF. This study represents the first demonstration of a cellular phenotype regulated by a JNK isoform family, JNK2.  (+info)

(5/17429) Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells.

CTGF is an immediate early growth responsive gene that has been shown to be a downstream mediator of TGFbeta actions in fibroblasts and vascular endothelial cells. In the present study hCTGF was isolated as immediate early target gene of EGF/TGFalpha in human pancreatic cancer cells by suppression hybridization. CTGF transcripts were found in 13/15 pancreatic cancer cell lines incubated with 10% serum. In 3/7 pancreatic cancer cell lines EGF/TGFalpha induced a significant rise of CTGF transcript levels peaking 1-2 h after the start of treatment. TGFbeta increased CTGF transcript levels in 2/7 pancreatic cancer cell lines after 4 h of treatment and this elevation was sustained after 24 h. Only treatment with TGFbeta was accompanied by a parallel induction of collagen type I transcription. 15/19 human pancreatic cancer tissues were shown to overexpress high levels of CTGF transcripts. CTGF transcript levels in pancreatic cancer tissues and nude mouse xenograft tumors showed a good correlation to the degree of fibrosis. In situ hybridization and the nude mouse experiments revealed that in pancreatic cancer tissues, fibroblasts are the predominant site of CTGF transcription, whereas the tumor cells appear to contribute to a lesser extent. We conclude that CTGF may be of paramount importance for the development of the characteristic desmoplastic reaction in pancreatic cancer tissues.  (+info)

(6/17429) Mechanisms related to [18F]fluorodeoxyglucose uptake of human colon cancers transplanted in nude mice.

[18F]Fluorodeoxyglucose ([18F]FDG), a glucose analogue, has been widely used for tumor imaging. To investigate the mechanisms related to [18F]FDG uptake by tumors, an experiment involving nude mice was performed. METHODS: Human colon cancer cell lines SNU-C2A, SNU-C4 and SNU-C5 were transplanted to nude mice. Using immunohistochemical staining and Western blot, the expression of glucose transporter (Glut) isoforms (Glut-1 through -5) in xenografted tumors was analyzed. For the analysis of messenger ribonucleic acid (mRNA) expression, reverse-transcription polymerase chain reaction and Northern blot were used and the enzyme activity of hexokinase in cancer tissues was measured by continuous spectrophotometric rate determination. RESULTS: [18F]FDG uptake in SNU-C4 and SNU-C5 cells was higher than in normal colon cells. Among these cells and xenografted tumors, SNU-C5 showed the highest level of [18F]FDG uptake, followed by SNU-C4 and SNU-C2A. An immunostaining experiment showed intense staining of Glut-1 in SNU-C5 tumors but somewhat faint staining in SNU-C4. SNU-C5 tumors also showed positive staining with Glut-3, although this was not the case with SNU-C2A and SNU-C4. Western blot analysis showed the expression of Glut-1 and Glut-3 in all tumors. Experiments involving Northern blot analysis and reverse-transcription polymerase chain reaction confirmed the overexpression of Glut-1 mRNA in all tumors, with the highest level in SNU-C5. The level of Glut-3 mRNA was also elevated in SNU-C5 tumors but not in SNU-C2A and SNU-C4. The enzyme activity of hexokinase did not vary among different tumors. CONCLUSION: Gluts, especially Glut-1, are responsible for [18F]FDG uptake in a nude mouse model of colon cancer rather than hexokinase activity. Increased numbers of glucose transporters at the plasma membrane of cancer cells is attributed to an increased level of transcripts of glucose transporter genes and may be a cause of increased [18F]FDG uptake, at least in colon cancer tumors.  (+info)

(7/17429) 99mTc-labeled vasoactive intestinal peptide receptor agonist: functional studies.

Vasoactive intestinal peptide (VIP) is a naturally occurring 28-amino acid peptide with a wide range of biological activities. Recent reports suggest that VIP receptors are expressed on a variety of malignant tumor cells and that the receptor density is higher than for somatostatin. Our aims were to label VIP with 99mTc--a generator-produced, inexpensive radionuclide that possesses ideal characteristics for scintigraphic imaging--and to evaluate 99mTc-VIP for bioactivity and its ability to detect experimental tumors. METHODS: VIP28 was modified at the carboxy terminus by the addition of four amino acids that provided an N4 configuration for a strong chelation of 99mTc. To eliminate steric hindrance, 4-aminobutyric acid (Aba) was used as a spacer. VIP28 was labeled with 1251, which served as a control. Biological activity of the modified VIP28 agonist (TP3654) was examined in vitro using a cell-binding assay and an opossum internal anal sphincter (IAS) smooth muscle relaxivity assay. Tissue distribution studies were performed at 4 and 24 h after injection, and receptor-blocking assays were also performed in nude mice bearing human colorectal cancer LS174T. Blood clearance was examined in normal Sprague-Dawley rats. RESULTS: The yield of 99mTc-TP3654 was quantitative, and the yields of 125I-VIP and 1251-TP3654 were >90%. All in vitro data strongly suggested that the biological activity of 99mTc-TP3654 agonist was equivalent to that of VIP28. As the time after injection increased, radioactivity in all tissues decreased, except in the receptor-enriched tumor (P = 0.84) and in the lungs (P = 0.78). The tumor uptake (0.23 percentage injected dose per gram of tissue [%ID/g]) was several-fold higher than 125I-VIP (0.06 %ID/g) at 24 h after injection in the similar system. In mice treated with unlabeled VIP or TP3654, the uptake of 99mTc-TP3654 decreased in all VIP receptor-rich tissues except the kidneys. The blood clearance was biphasic; the alpha half-time was 5 min and the beta half-time was approximately 120 min. CONCLUSION: VIP28 was modified and successfully labeled with 99mTc. The results of all in vitro examinations indicated that the biological activity of TP3654 was equivalent to that of native VIP28 and tumor binding was receptor specific.  (+info)

(8/17429) Effect of tumor necrosis factor alpha on vascular resistance, nitric oxide production, and glucose and oxygen consumption in perfused tissue-isolated human melanoma xenografts.

The effect of tumor necrosis factor alpha (TNF-alpha) on vascular resistance, nitric oxide production, and consumption of oxygen and glucose was examined in a perfused tissue-isolated tumor model in nude mice. One experimental group was perfused with heparinized Krebs-Henseleit buffer, a second one was perfused with TNF-alpha (500 microgram/kg) 5 h before perfusion. The vascular resistance increased significantly 5 h after TNF-alpha injection. The increase in vascular resistance did not seem to be mediated by a decrease in tumor nitric oxide production, as determined by perfusate nitrate/nitrite concentrations, but may be due to aggregation of leukocytes, platelets, and erythrocytes and/or endothelial consumption among the three experimental groups. The oxygen consumption was linearly dependent on the amount of available oxygen in the perfusate, whereas the glucose consumption was constant and independent of the glucose delivery rate. The present experiments provide new insights into physiological and metabolic mechanisms of action of TNF- alpha for optimization of future treatment schedules involving TNF-alpha.  (+info)