Laminin polymerization induces a receptor-cytoskeleton network. (73/10079)

The transition of laminin from a monomeric to a polymerized state is thought to be a crucial step in the development of basement membranes and in the case of skeletal muscle, mutations in laminin can result in severe muscular dystrophies with basement membrane defects. We have evaluated laminin polymer and receptor interactions to determine the requirements for laminin assembly on a cell surface and investigated what cellular responses might be mediated by this transition. We found that on muscle cell surfaces, laminins preferentially polymerize while bound to receptors that included dystroglycan and alpha7beta1 integrin. These receptor interactions are mediated through laminin COOH-terminal domains that are spatially and functionally distinct from NH2-terminal polymer binding sites. This receptor-facilitated self-assembly drives rearrangement of laminin into a cell-associated polygonal network, a process that also requires actin reorganization and tyrosine phosphorylation. As a result, dystroglycan and integrin redistribute into a reciprocal network as do cortical cytoskeleton components vinculin and dystrophin. Cytoskeletal and receptor reorganization is dependent on laminin polymerization and fails in response to receptor occupancy alone (nonpolymerizing laminin). Preferential polymerization of laminin on cell surfaces, and the resulting induction of cortical architecture, is a cooperative process requiring laminin- receptor ligation, receptor-facilitated self-assembly, actin reorganization, and signaling events.  (+info)

Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+NKT cells. (74/10079)

In contrast to peripheral lymphoid organs, a high percentage of T cells in the liver are CD4+NKT cells. We asked whether adhesion molecules play any role in the accumulation of CD4+NKT cells in the liver. Liver CD4+NKT cells expressed ICAM-1 and high levels of LFA-1. In the livers of LFA-1-deficient mice, the number of CD4+NKT cells was markedly decreased. This reduction was restricted to the liver, and no reduction was found in the other organs analyzed. In contrast, the number of liver CD4+NKT cells in ICAM-1-deficient mice was only marginally reduced. In a reciprocal radiation thymocyte reconstitution system with LFA-1-deficient and wild-type mice, LFA-1 expressed on liver cells other than CD4+NKT cells was required for an accumulation of CD4+NKT cells in the liver. These results demonstrate a crucial role for LFA-1 in the accumulation of CD4+NKT cells in the liver.  (+info)

Orally induced peripheral nonresponsiveness is maintained in the absence of functional Th1 or Th2 cells. (75/10079)

Intragastric administration of soluble protein Ags results in peripheral tolerance to the fed Ag. To examine the role of cytokine regulation in the induction of oral tolerance, we fed OVA to mice deficient in Th1 (Stat 4-/-) and Th2 (Stat 6-/-) cells and compared their response to that of normal BALB/c controls. We found that, in spite of these deficiencies, OVA-specific peripheral cell-mediated and humoral nonresponsiveness was maintained in both Stat 4-/- and Stat 6-/- mice. In the mucosa, both Peyer's patch T cell proliferative responses and OVA-specific fecal IgA were reduced in Stat 4-/- and Stat 6-/- mice fed OVA but not in normal BALB/c controls. Mucosal, but not peripheral, nonresponsiveness was abrogated by the inclusion of a neutralizing Ab to TGF-beta in the culture medium. Our results show that, in the periphery, tolerance to oral Ag can be induced in both a Th1- or Th2-deficient environment. In the mucosa, however, the absence of Th1 and Th2 cytokines can markedly affect this response, perhaps by regulation of TGF-beta-secreting cells.  (+info)

IL-4 inhibits the production of TNF-alpha and IL-12 by STAT6-dependent and -independent mechanisms. (76/10079)

IL-4 promotes allergic responses and inhibits the production of proinflammatory cytokines by monocytes and macrophages. The promotion of allergic responses by IL-4 has been shown to be absolutely dependent on the transcription factor STAT6. We report here that the inhibitory effects of IL-4 on the production of TNF-alpha or IL-12 by macrophages had both STAT6-dependent and -independent components, depending on the stimuli. IL-4 failed to inhibit the release of TNF-alpha or IL-12 from STAT6 null macrophages stimulated with LPS alone. However, IL-4 still induced significant inhibition of the production of TNF-alpha and IL-12 from STAT6 null macrophages that were stimulated with the more physiologically relevant combination of LPS and IFN-gamma. These data show that STAT6 is required for the IL-4-mediated inhibition of the production of TNF-alpha and IL-12 stimulated by LPS alone, but that IL-4 also activates distinct, STAT6 independent mechanism(s) that inhibit the IFN-gamma-mediated enhancement of IL-12 and TNF-alpha production.  (+info)

Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. (77/10079)

CD4 T cells are important in the protective immune response against tuberculosis. Two mouse models deficient in CD4 T cells were used to examine the mechanism by which these cells participate in protection against Mycobacterium tuberculosis challenge. Transgenic mice deficient in either MHC class II or CD4 molecules demonstrated increased susceptibility to M. tuberculosis, compared with wild-type mice. MHC class II-/- mice were more susceptible than CD4-/- mice, as measured by survival following M. tuberculosis challenge, but the relative resistance of CD4-/- mice did not appear to be due to increased numbers of CD4-8- (double-negative) T cells. Analysis of in vivo IFN-gamma production in the lungs of infected mice revealed that both mutant mouse strains were only transiently impaired in their ability to produce IFN-gamma following infection. At 2 wk postinfection, IFN-gamma production, assessed by RT-PCR and intracellular cytokine staining, in the mutant mice was reduced by >50% compared with that in wild-type mice. However, by 4 wk postinfection, both mutant and wild-type mice had similar levels of IFN-gamma mRNA and protein production. In CD4 T cell-deficient mice, IFN-gamma production was due to CD8 T cells. Thus, the importance of IFN-gamma production by CD4 T cells appears to be early in infection, lending support to the hypothesis that early events in M. tuberculosis infection are crucial determinants of the course of infection.  (+info)

Chronic inflammatory disease alters adhesion molecule requirements for acute neutrophil emigration in mouse skin. (78/10079)

Mutant mice triply deficient in ICAM-1, E-selectin, and P-selectin did not develop the neutrophilic skin lesions that spontaneously arise in mutants doubly deficient in E-selectin and P-selectin. Thus, ICAM-1 is essential to skin disease resulting from endothelial selectin deficiency. During experimental dermatitis, acute neutrophil emigration was completely prevented in young mice deficient in both selectins (E/P and E/P/I mutants). However, older E/P mutants with spontaneous skin lesions displayed an endothelial selectin-independent pathway for acute neutrophil emigration. In contrast, emigration remained compromised in E/P/I mutants and CD18 mutants regardless of age or lesions. Experimentally induced chronic lesions elicited this pathway for acute emigration in young E/P mutants. Thus, an endothelial selectin-independent pathway for acute neutrophil emigration is induced in E/P mice by chronic inflammation at distant sites, and this pathway may contribute to skin disease resulting from endothelial selectin deficiency.  (+info)

Augmentation of the CD8+ T cell response by IFN-gamma in IL-12-deficient mice during Toxoplasma gondii infection. (79/10079)

The importance of IFN-gamma in regulating the host CD8+ T cell response during microbial infection has not been delineated. Mice deficient for the p40 chain of the IL-12 heterodimer have impaired IFN-gamma production and are susceptible to infection with the intracellular parasite Toxoplasma gondii. The administration of exogenous IFN-gamma to parasite-infected p40-/- mice increases survival and up-regulates the depressed CD8+ T cell response following infection. CD8+ T cells isolated from cytokine-treated p40-/- mice exhibit an increase in both precursor CTL frequency and IFN-gamma production compared with untreated controls. The enhancement of the CD8+ T cell response is independent of CD4+ T cell help. These CD8+ T cells induce protective immunity against a lethal challenge when adoptively transferred into naive p40-/- and IFN-gamma-/- mice. These observations indicate that IFN-gamma can regulate the CD8+ T cell response during T. gondii infection.  (+info)

Development of lyme arthritis in mice deficient in inducible nitric oxide synthase. (80/10079)

Nitric oxide (NO) is a powerful antimicrobial agent and an important regulatory molecule of the innate immune response. To determine if NO has a role in experimental Lyme disease, arthritis-resistant DBA/2J and arthritis-susceptible C3H/HeJ mice were bred to be genetically deficient for inducible NO synthase (iNOS). Following footpad injection of Borrelia burgdorferi, arthritis was similar between iNOS-deficient and control animals regardless of their genetic background. Histologic examination and arthritis severity scores of ankles revealed no differences in arthritis development between iNOS-deficient and control animals. Despite being deficient in a key antimicrobial agent, iNOS-deficient mice had tissue levels of B. burgdorferi similar to those in control mice. Thus, NO does not have a critical role in susceptibility to Lyme arthritis through tissue damage via an overexuberant inflammatory response, nor is it required in resistance through the clearance of spirochetes from tissues.  (+info)