Loading...
(1/5044) Donor MHC and adhesion molecules in transplant arteriosclerosis.

Transplant-associated arteriosclerosis remains an obstacle to long-term graft survival. To determine the contribution to transplant arteriosclerosis of MHC and adhesion molecules from cells of the donor vasculature, we allografted carotid artery loops from six mutant mouse strains into immunocompetent CBA/CaJ recipients. The donor mice were deficient in either MHC I molecules or MHC II molecules, both MHC I and MHC II molecules, the adhesion molecule P-selectin, intercellular adhesion molecule (ICAM)-1, or both P-selectin and ICAM-1. Donor arteries in which ICAM-1, MHC II, or both MHC I and MHC II were absent showed reductions in neointima formation of 52%, 33%, and 38%, respectively, due primarily to a reduction in smooth muscle cell (SMC) accumulation. In P-selectin-deficient donor arteries, neointima formation did not differ from that in controls. In donor arteries lacking both P-selectin and ICAM-1, the size of the neointima was similar to that in those lacking ICAM-1 alone. In contrast, neointima formation increased by 52% in MHC I-deficient donor arteries. The number of CD4-positive T cells increased by 2.8-fold in MHC I-deficient arteries, and that of alpha-actin-positive SMCs by twofold. These observations indicate that ICAM-1 and MHC II molecules expressed in the donor vessel wall may promote transplant-associated arteriosclerosis. MHC I molecules expressed in the donor may have a protective effect.  (+info)

(2/5044) A new element within the T-cell receptor alpha locus required for tissue-specific locus control region activity.

Locus control regions (LCRs) are cis-acting regulatory elements thought to provide a tissue-specific open chromatin domain for genes to which they are linked. The gene for T-cell receptor alpha chain (TCRalpha) is exclusively expressed in T cells, and the chromatin at its locus displays differentially open configurations in expressing and nonexpressing tissues. Mouse TCRalpha exists in a complex locus containing three differentially regulated genes. We previously described an LCR in this locus that confers T-lineage-specific expression upon linked transgenes. The 3' portion of this LCR contains an unrestricted chromatin opening activity while the 5' portion contains elements restricting this activity to T cells. This tissue-specificity region contains four known DNase I hypersensitive sites, two located near transcriptional silencers, one at the TCRalpha enhancer, and another located 3' of the enhancer in a 1-kb region of unknown function. Analysis of this region using transgenic mice reveals that the silencer regions contribute negligibly to LCR activity. While the enhancer is required for complete LCR function, its removal has surprisingly little effect on chromatin structure or expression outside the thymus. Rather, the region 3' of the enhancer appears responsible for the tissue-differential chromatin configurations observed at the TCRalpha locus. This region, herein termed the "HS1' element," also increases lymphoid transgene expression while suppressing ectopic transgene activity. Thus, this previously undescribed element is an integral part of the TCRalphaLCR, which influences tissue-specific chromatin structure and gene expression.  (+info)

(3/5044) Enhanced Th1 and dampened Th2 responses synergize to inhibit acute granulomatous and fibrotic responses in murine schistosomiasis mansoni.

In murine schistosomiasis mansoni, CD4(+) Th1 and Th2 cells participate in the ovum-induced granulomatous inflammation. Previous studies showed that the interleukin-12 (IL-12)-induced Th1 response strongly suppressed the Th2-cell-mediated pulmonary granuloma development in naive or primed mice. However, liver granulomas were only moderately suppressed in egg-vaccinated, recombinant IL-12 (rIL-12)-treated infected mice. The present study shows that repeated rIL-12 injections given during early granuloma development at 5 to 7 weeks after infection prolonged the Th1 phase and resulted in gamma interferon-mediated suppression of liver granulomas. The timing is crucial: if given at 6 to 8 weeks, during the Th2-dominated phase of florid granuloma growth, the treatment is ineffective. Daily injections of rIL-12 given between 5 and 7.5 weeks during the period of granuloma growth achieved a somewhat-stronger diminution in granuloma growth with less deposition of collagen but caused 60% mortality and liver pathology. In contrast, combined treatment with rIL-12 and anti-IL-4-anti-IL-10 monoclonal antibody (MAb) injections given during the Th2 phase strongly inhibited liver granuloma growth without mortality. The diminished inflammatory response was accompanied by less deposition of collagen in the liver. Moreover, neutralization of endogenous IL-12 by anti-IL-12 MAbs effectively decreased the early Th1 phase (between 5 and 6 weeks after infection) but not the developing Th2 phase (5 to 7 weeks) of granuloma development. These studies indicate that the granulomatous response in infected mice can be manipulated by utilizing the Th1-Th2-subset antagonism with potential salutary results in the amelioration of fibrous pathology.  (+info)

(4/5044) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes.

It was previously shown that fully grown ovarian germinal vesicle (GV) oocytes of adult mice exhibit several nuclear configurations that differ essentially by the presence or absence of a ring of condensed chromatin around the nucleolus. These configurations have been termed, respectively, SN (surrounded nucleolus) and NSN (nonsurrounded nucleolus). Work from our and other laboratories has revealed ultrastructural and functional differences between these two configurations. The aims of the present study were 1) to analyze the equilibrium between the SN and the NSN population as a function of the age of the mice and the time after hCG-induced ovulation and 2) to study the polymerase I (pol I)- and polymerase II (pol II)-dependent transcription in both types of oocytes through the detection of bromouridine incorporated into nascent RNA. We show 1) that ovarian GV oocytes exhibiting the SN-type configuration can be found as soon as 17 days after birth in the C57/CBA mouse strain and 2) that the SN:NSN ratio of ovarian GV oocytes is very low just after hCG-induced ovulation and then increases progressively with the time after ovulation. Furthermore, we demonstrate that the SN configuration correlates strictly with the arrest of both pol I- and pol II-dependent transcription in mice at any age. Finally, we show that ribosomal genes are located at the outer periphery of the nucleolus in the NSN configuration and that pol I-dependent perinucleolar transcription sites correspond to specific ultrastructural features of the nucleolus. Altogether, these results provide clear-cut criteria delineating transcriptionally active GV oocytes from those that are inactive, and confirm that the SN-type configuration is mostly present in preovulatory oocytes.  (+info)

(5/5044) Interaction of B cells with activated T cells reduces the threshold for CD40-mediated B cell activation.

CD154-CD40 interactions are of central importance for the induction of antibody responses to T-dependent antigens. Since most anti-CD40 mAb are only weak B cell mitogens, it is believed that under physiological conditions, signals through CD40 synergize with those from other receptors on B cells to induce B cell activation. We show here that the interaction of either normal B cells, or those from CBA/N (xid) mice, with CD3-activated primary T cells in whole spleen cell cultures markedly reduces the threshold for B cell activation via CD40. Hence, these pre-activated cells undergo vigorous proliferation when stimulated with either optimal or suboptimal concentrations of weakly mitogenic anti-CD40 mAb, or with soluble CD40 ligand. Blocking experiments indicate that the establishment of this priming effect requires stimulation via CD40 itself, plus T cell-derived IL-2. In support of this concept, only CD3/CD28-pre-activated, but not CD3-pre-activated T cells induce this effect, unless the co-cultures of B cells with the latter T cells are supplemented with IL-2. Although B cells activated in this fashion do express higher levels of CD40 than naive cells, we believe that this is insufficient to explain the observed dramatic effects on their proliferative capacity. Rather we propose that T cell-dependent B cell activation induces fundamental changes in the signalling machinery invoked by ligation of CD40. It is likely that this amplification loop could play an important role during the initiation of antibody responses to T-dependent antigens, when activated CD4 T cells only express low levels of CD154.  (+info)

(6/5044) Terreic acid, a quinone epoxide inhibitor of Bruton's tyrosine kinase.

Bruton's tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.  (+info)

(7/5044) Gonadotropin-releasing hormone analogue conjugates with strong selective antitumor activity.

Conjugation of gonadotropin-releasing hormone (GnRH) analogues GnRH-III, MI-1544, and MI-1892 through lysyl side chains and a tetrapeptide spacer, Gly-Phe-Leu-Gly (X) to a copolymer, poly(N-vinylpyrrolidone-co-maleic acid) (P) caused increased antiproliferative activity toward MCF-7 and MDA-MB-231 breast, PC3 and LNCaP prostate, and Ishikawa endometrial cancer cell lines in culture and against tumor development by xenografts of the breast cancer cells in immunodeficient mice. MCF-7 cells treated with P-X-1544 and P-X-1892 displayed characteristic signs of apoptosis, including vacuoles in the cytoplasm, rounding up, apoptotic bodies, bleb formation, and DNA fragmentation. Conjugates, but not free peptides, inhibited cdc25 phosphatase and caused accumulation of Ishikawa and PC3 cells in the G2/M phase of the cell cycle after 24 h at lower doses and in the G1 and G2 phases after 48 h. Since P-X-peptides appear to be internalized, the increased cytotoxicity of the conjugates is attributed to protection of peptides from proteolysis, enhanced interaction of the peptides with the GnRH receptors, and/or internalization of P-X-peptide receptor complexes so that P can exert toxic effects inside, possibly by inhibiting enzymes involved in the cell cycle. The additional specificity of P-X-peptides compared with free peptides for direct antiproliferative effects on the cancer cells but not for interactions in the pituitary indicates the therapeutic potential of the conjugates.  (+info)

(8/5044) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1.

The pathogenesis of candidiasis involves invasion of host tissues by filamentous forms of the opportunistic yeast Candida albicans. Morphology-specific gene products may confer proinvasive properties. A hypha-specific surface protein, Hwp1, with similarities to mammalian small proline-rich proteins was shown to serve as a substrate for mammalian transglutaminases. Candida albicans strains lacking Hwp1 were unable to form stable attachments to human buccal epithelial cells and had a reduced capacity to cause systemic candidiasis in mice. This represents a paradigm for microbial adhesion that implicates essential host enzymes.  (+info)