Loading...
(1/8889) Sulfhydryl compounds in melanocytes of yellow (Ay/a), nonagouti (a/a), and agouti (A/A) mice.

CLEFFMANN (1953, 1963a,b) has reported that yellow but not black melanocytes of agouti (A/A) rabbits contained reducing sulfhydryl compounds. We have attempted to repeat CLEFFMANN's observations in mouse melanocytes of the lethal yellow (Ay/a), nonagouti (a/a) and agouti (A/A) genotypes. Our results contradict those of CLEFFMANN and reveal that yellow and black melanocytes, regardless of genotype, possess equivalent amounts of histochemically detectable sulfhydryl compounds. These results do not support the hypothesis that agouti-locus genes act by controlling the sulfhydryl metabolism of pigment cells.  (+info)

(2/8889) Sonic hedgehog signaling by the patched-smoothened receptor complex.

BACKGROUND: The Hedgehog (Hh) family of secreted proteins is involved in a number of developmental processes as well as in cancer. Genetic and biochemical data suggest that the Sonic hedgehog (Shh) receptor is composed of at least two proteins: the tumor suppressor protein Patched (Ptc) and the seven-transmembrane protein Smoothened (Smo). RESULTS: Using a biochemical assay for activation of the transcription factor Gli, a downstream component of the Hh pathway, we show here that Smo functions as the signaling component of the Shh receptor, and that this activity can be blocked by Ptc. The inhibition of Smo by Ptc can be relieved by the addition of Shh. Furthermore, oncogenic forms of Smo are insensitive to Ptc repression in this assay. Mapping of the Smo domains required for binding to Ptc and for signaling revealed that the Smo-Ptc interaction involves mainly the amino terminus of Smo, and that the third intracellular loop and the seventh transmembrane domain are required for signaling. CONCLUSIONS: These data demonstrate that Smo is the signaling component of a multicomponent Hh receptor complex and that Ptc is a ligand-regulated inhibitor of Smo. Different domains of Smo are involved in Ptc binding and activation of a Gli reporter construct. The latter requires the third intracellular loop and the seventh transmembrane domain of Smo, regions often involved in coupling to G proteins. No changes in the levels of cyclic AMP or calcium associated with such pathways could be detected following receptor activation, however.  (+info)

(3/8889) Difference between mammary epithelial cells from mature virgin and primiparous mice.

Mammary epithelial cells from mature virgin mice are similar to those from primiparous mice in several respects. However, there is one known difference. The cells from the mature virgin must traverse the cell cycle in order to become competent to make casein and enzymatically active alpha-lactalbumin in vitro; those from the primiparous animal can make these proteins without first traversing the cycle. In this regard, cells from human placental lactogen- and prolactin-treated mature virgins are, after involution, similar to those from primiparous mice. The developemental block in the cells from the mature virgin, imposed by preventing cell cycle traversal, has been partially delineated. It does not appear to reside at the levels of ultrastructural maturation or the formation of casein messenger RNA. Rather, the lesion is postranscriptional and may be at the level of translation, or posttranslational modification, or both.  (+info)

(4/8889) Systemic administration of rIL-12 synergistically enhances the therapeutic effect of a TNF gene-transduced cancer vaccine.

Interleukin-12 (IL-12) is a potent antitumor cytokine, which induces and enhances the activity of natural killer (NK) cells, lymphokine activated killer (LAK) cells and cytotoxic T lymphocytes (CTL). IL-12 also stimulates IFN-gamma production from both T cells and NK cells. In this study, we transfected methylcholanthrene-induced fibrosarcoma (MCA-D) with TNF gene and investigated the therapeutic effect of TNF gene-transduced cancer vaccine and whether the vaccination effect is enhanced by systemic administration of recombinant IL-12 (rIL-12), in a murine model. TNF gene-transduced cancer vaccine or systemic administration of rIL-12 showed slight or moderate inhibition of pre-established tumor. However, simultaneous application of the vaccine and rIL-12 resulted in complete eradication. The cytotoxicity of CTL against parental tumor cells was enhanced with the combination of the vaccine and rIL-12, and IFN-gamma production from spleen cells also increased synergistically. Our findings show that synergistic enhancement of CTL activity and IFN-gamma production could play an important role in the antitumor effect of combination therapy using TNF gene-transduced cancer vaccine and rIL-12.  (+info)

(5/8889) Transduction of glioma cells using a high-titer retroviral vector system and their subsequent migration in brain tumors.

The intracranial migration of transduced glioma cells was investigated in order to improve the treatment of malignant glioma by gene therapy using retroviral vectors. In this study, about half the volume of the tumor mass could be transduced in 14 days after only a single implantation of 3 x 10(5) retrovirus-producing cells into a tumor mass with a diameter of 5 mm. Moreover, we were able to follow the migration of glioma cells transduced by the lacZ-harboring retroviruses originating from the high-titer retrovirus-producing cells. Besides the importance of using a high-titer retroviral vector system, our results also indicate that the implantation site of the virus-producing cells and the interval between the implantation of the virus-producing cells and the subsequent administration of ganciclovir are important factors for the efficient killing of glioma cells.  (+info)

(6/8889) Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola.

We have recently demonstrated that the periodontopathogenic oral spirochete Treponema denticola possesses membrane-associated lipoproteins in addition to lipooligosaccharide (LOS). The aim of the present study was to test the potential of these oral spirochetal components to induce the production of inflammatory mediators by human macrophages, which in turn may stimulate tissue breakdown as observed in periodontal diseases. An enriched lipoprotein fraction (dLPP) from T. denticola ATCC 35404 obtained upon extraction of the treponemes with Triton X-114 was found to stimulate the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), and interleukin-1 (IL-1) by mouse macrophages in a dose-dependent manner. Induction of NO by dLPP was at 25% of the levels obtained by Salmonella typhosa lipopolysaccharide (LPS) at similar concentrations, while IL-1 was produced at similar levels by both inducers. dLPP-mediated macrophage activation was unaffected by amounts of polymyxin B that neutralized the induction produced by S. typhosa LPS. dLPP also induced NO and TNF-alpha secretion from macrophages isolated from endotoxin-unresponsive C3H/HeJ mice to an extent similar to the stimulation produced in endotoxin-responsive mice. Purified T. denticola LOS also produced a concentration-dependent activation of NO and TNF-alpha in LPS-responsive and -nonresponsive mouse macrophages. However, macrophage activation by LOS was inhibited by polymyxin B. These results suggest that T. denticola lipoproteins and LOS may play a role in the inflammatory processes that characterize periodontal diseases.  (+info)

(7/8889) Clearance of Chlamydia trachomatis from the murine genital mucosa does not require perforin-mediated cytolysis or Fas-mediated apoptosis.

The molecular mechanisms of resistance to genital infection with the mouse pneumonitis (MoPn) strain of Chlamydia trachomatis are unknown. A role for major histocompatibility complex class II-restricted, interleukin-12-dependent CD4(+) T cells has been established, but the functional activity of these cells does not depend on secretion of gamma interferon. Here we examined the potential contribution of T-cell-mediated cytotoxicity and apoptosis to mucosal clearance of MoPn by using mice deficient in the molecular mediators of target cell lysis. Animals lacking perforin, Fas, Fas ligand, or both perforin and Fas ligand were infected genitally with C. trachomatis MoPn and monitored for expression of immunity to chlamydial antigens and clearance of MoPn from the genital mucosa. In each case, the profile of spleen cytokine production, the magnitude of the host antibody response, and the kinetics of chlamydial clearance were similar to those of genetically intact controls. Compensatory overproduction of tumor necrosis factor alpha, an alternate mediator of apoptosis in certain cell types, did not appear to account for the ability of mutant mice to resolve Chlamydia infections. These results fail to support CD4(+) T-cell-mediated apoptosis or CD8(+) T-cell-mediated cytotoxicity as being critical to the clearance of C. trachomatis MoPn urogenital infections.  (+info)

(8/8889) Maintenance of motility in mouse sperm permeabilized with streptolysin O.

One approach to studying the mechanisms governing sperm motility is to permeabilize sperm and examine the regulation of motility by manipulating the intracellular milieu of the cell. The most common method of sperm permeabilization, detergent treatment, has the disadvantage that the membranes and many proteins are extracted from the cell. To avoid this problem, we have developed a method that uses streptolysin O to create stable pores within the plasma membrane while leaving internal membranes intact. Sperm were permeabilized, preincubated, and then treated with 0.6 U/ml of streptolysin O. Permeabilization was assessed by fluorescent dye technologies and endogenous protein phosphorylation using exogenously added [gamma-32P]ATP. Streptolysin O-induced permeabilization rendered the sperm immotile, and the effect was Ca2+-dependent. When the cells were treated simultaneously with a medium containing ATP, streptolysin O-treated sperm maintained flagellar movement. These results demonstrate that the streptolysin O permeabilization model system is a useful experimental method for studying the mechanisms that regulate sperm motility since it allows the flagellar apparatus to be exposed to various exogenously added molecules.  (+info)