Monocyte activation in rheumatoid arthritis (RA): increased integrin, Fc gamma and complement receptor expression and the effect of glucocorticoids. (1/262)

The aim of this work was to study the expression of beta 1- and beta 2-integrins, CR1, CD44 and Fc gamma receptors on peripheral blood monocytes in RA. The expression of these receptors was measured by flow cytometry, before and after treatment with low-dose prednisolone. Expression of the same receptors was also measured before and after treatment with metyrapone, a substance that inhibits the synthesis of cortisol in the adrenals. The expression of the beta 2-integrins CD11a, CD11b and CD18, of CD35 (CR1), and of Fc gamma RII and Fc gamma RI (CD32 and CD64) on monocytes was elevated in the RA patients compared with healthy controls, while the expression of the beta 1-integrins (CD29, CD49d, CD49f) was unaffected. A significant correlation between monocyte expression of CD64 and C-reactive protein (CRP), and blood platelet count, respectively, was found in the group of patients with RA. After 4-6 weeks of treatment with low-dose prednisolone, the expression on the monocytes of CD11a, CD11b, CD18, CD35, CD32 and CD64 was normalized. A significant correlation (r = 0.64, P = 0.02) was found between the decrease in expression of CD11b and clinical improvement after prednisolone treatment. Two days of metyrapone treatment, which significantly lowered the serum cortisol levels, elevated the expression of CD35 and CD49f. Priming of peripheral monocytes seems to be one of the mechanisms behind the recruitment of monocytes to the rheumatoid synovium. One reason for the good clinical effects of prednisolone in RA could be a down-regulation of adhesion and phagocytosis receptors on monocytes.  (+info)

Roles of aldosterone and angiotensin in maturation of sodium appetite in furosemide-treated rats. (2/262)

When rats are treated with furosemide, there is a rapid natriuresis. However, increased sodium appetite does not occur until some time later. One hypothesis to explain this delay is that increased circulating levels of the hormones of sodium depletion prime or sensitize the brain circuits involved in sodium appetite, perhaps by induction of target gene(s). In the present study, we describe the time course of the temporal maturation of sodium appetite after furosemide treatment and the associated changes in plasma levels of ANG II and aldosterone and in plasma volume. Sodium appetite is modest 3 h after furosemide treatment, is increased after 12 h, and is still larger after 24 h. This pattern is evident with repeated testing. Plasma levels of aldosterone and plasma renin activity are substantially increased 3 h after furosemide treatment, and so the NaCl appetite cannot result simply from progressively increasing levels of these hormones. Furthermore, activation of the subfornical organ and the ventral lamina terminalis, assessed with c-Fos immunocytochemistry, did not differ across these three times. Metyrapone, an inhibitor of adrenal steroid synthesis, was used to examine sodium appetite in the absence of elevations in aldosterone after furosemide treatment. Although metyrapone effectively blocked the increase in aldosterone, it was without effect on the appetite 3 or 24 h after furosemide treatment. Furthermore, elevations of plasma aldosterone by the use of minipumps for several days before furosemide treatment did not prime or potentiate but instead tended to inhibit the induced sodium appetite, despite achieving levels of aldosterone and plasma renin activity typically associated with a robust sodium appetite. Infusions of DOCA gave a similar result. Lastly, minipump infusions of ANG II also did not potentiate sodium appetite. Thus neither addition nor subtraction of these hormones alone influenced sodium appetite under these conditions.  (+info)

Radioimmunoassay for 11-deoxycortisol using iodine-labeled tracer. (3/262)

A simple and sensitive radioimmunoassay for 11-deoxycortisol was developed. The antiserum produced in rabbits by immunizing with a complex of 11-deoxycortisol-3-oxime and bovine serum albumin (BSA) has little cross-reactivity with other endogenous steroids. The immunoassay procedure requires only one-step ethanol denaturation of binding proteins in plasma and extraction by an organic solvent can be omitted. Furthermore, use of 125I-labeled tracer significantly simplify the counting procedure. The method is sensitive enough to detect 1 microng/100 ml of 11-deoxycortisol. Plasma 11-deoxycortisol levels measured by this method after the administration of a single dose of metyrapone ranged from 5.0 to 19.2 microng/100 ml, whereas they were 0 to 4.0 microng/100 ml in hypopituitary patients. It is concluded that this simple method is useful for the routine assay of plasma 11-deoxycortisol as a parameter of the metyrapone tests.  (+info)

Thymus-derived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation. (4/262)

Selection processes in the thymus eliminate nonfunctional or harmful T cells and allow the survival of those cells with the potential to recognize Ag in association with self-MHC-encoded molecules (Ag/MHC). We have previously demonstrated that thymus-derived glucocorticoids antagonize TCR-mediated deletion, suggesting a role for endogenous thymic glucocorticoids in promoting survival of thymocytes following TCR engagement. Consistent with this hypothesis, we now show that inhibition of thymus glucocorticoid biosynthesis causes an increase in thymocyte apoptosis and a decrease in recovery that are directly proportional to the number of MHC-encoded molecules present and, therefore, the number of ligands available for TCR recognition. Expression of CD5 on CD4+CD8+ thymocytes, an indicator of TCR-mediated activation, increased in a TCR- and MHC-dependent manner when corticosteroid production or responsiveness was decreased. These results indicate that thymus-derived glucocorticoids determine where the window of thymocyte selection occurs in the TCR avidity spectrum by dampening the biological consequences of TCR occupancy and reveal that glucocorticoids mask the high percentage of self-Ag/MHC-reactive thymocytes that exist in the preselection repertoire.  (+info)

Role of endogenous cortisol in basal liquid clearance from distal air spaces in adult guinea-pigs. (5/262)

1. We investigated the role of endogenous cortisol in the modulation of distal air space liquid clearance in adult guinea-pigs. Cortisol synthesis was inhibited with the 11-beta-hydroxylase inhibitor metyrapone (0-7 days pretreatment). After cortisol synthesis inhibition, distal air space liquid clearance was measured by the increase in concentration of an instilled 5 % albumin solution after 1 h. 2. Two days of metyrapone pretreatment resulted in a 46+/-19 % decrease in plasma cortisol levels compared with control, which was paralleled by a 60+/-13 % decrease in distal air space liquid clearance. The Na+ channel inhibitor amiloride inhibited 40+/-22 % of distal air space liquid clearance in control animals but did not inhibit distal air space liquid clearance in the metyrapone-pretreated group. Co-injection of dexamethasone prevented the inhibition by metyrapone and the amiloride sensitivity of distal air space liquid clearance was greater than in control animals. After 7 days of metyrapone pretreatment, plasma cortisol levels and distal air space liquid clearance were not significantly different from normal, but amiloride sensitivity was greater than in control animals (91+/-37%). 3. Pretreatment with emetine, a protein synthesis inhibitor, reduced distal air space liquid clearance in control animals and in dexamethasone-co-injected animals, but failed to inhibit distal air space liquid clearance after metyrapone pretreatment. Expression of the epithelial sodium channel alpha-subunit (alphaENaC) mRNA in lung tissue was decreased after 2 days of metyrapone pretreatment and after 7 days pretreatment or after co-injection with dexamethasone, alphaENaC mRNA expression was restored towards control levels. 4. Thus, endogenous cortisol is important for maintaining normal liquid balance in the adult guinea-pig lung and a critical regulatory pathway is by modulation of ENaC expression and/or function.  (+info)

Postischemic steroid modulation: effects on hippocampal neuronal integrity and synaptic plasticity. (6/262)

Elimination of corticosteroids after ischemia, by removal of the adrenals, has been reported to preserve neuronal integrity later. To establish the therapeutic potential of this observation, the authors address two questions: first, whether clinically more relevant steroid manipulations after ischemia exert similar protective effects, and second, whether changes in synaptic functioning occur along with structural alterations. To test this, the authors treated animals immediately after hypoxia-ischemia with (1) the steroid synthesis inhibitor metyrapone, (2) the synthetic glucocorticoid receptor agonist dexamethasone, (3) the selective glucocorticoid antagonist RU 38486, or (4) corticosterone. Metyrapone, but none of the other compounds, attenuated the occurrence of seizures immediately after ischemia. Twenty-four hours after hypoxia-ischemia, CAI hippocampal field potentials in response to stimulation of Schaffer/commissural fibers were found to be reduced. The attenuation of synaptic transmission was partly prevented by metyrapone. None of the other experimental treatments influenced the impaired synaptic function. Gross morphologic analysis revealed no differences in the loss of neuronal structure between the experimental groups at this time point. Taken together, these data suggest that metyrapone preserves neuronal functioning despite loss of neuronal structure. The authors tentatively conclude that preventing the ongoing production of steroids shortly after ischemia can delay and attenuate the appearance of ischemia-related pathology.  (+info)

Characterization of the binding of [3H]-clobenpropit to histamine H3-receptors in guinea-pig cerebral cortex membranes. (7/262)

1 We have investigated the binding of a novel histamine H3-receptor antagonist radioligand, [3H]- clobenpropit ([3H]-VUF9153), to guinea-pig cerebral cortex membranes. 2 Saturation isotherms for [3H]-clobenpropit appeared biphasic. Scatchard plots were curvilinear and Hill plot slopes were significantly less than unity (0.63+/-0.03; n = 12+/-s.e.mean). The radioligand appeared to label two sites in guinea-pig cerebral cortex membranes with apparent affinities (pKD') of 10.91+/-0.12 (Bmax = 5.34+/-0.85 fmol mg(-1) original wet weight) and 9.17+/-0.16 (Bmax = 23.20+/-6.70 fmol mg(-1)). 3 In the presence of metyrapone (3 mM) or sodium chloride (100 mM), [3H]-clobenpropit appeared to label a homogeneous receptor population (Bmax=3.41+/-0.46 fmol mg-1 and 3.49+/-0.44 fmol mg(-1), pKD' = 10.59+/-0.17 and 10.77+/-0.02, respectively). Scatchard plots were linear and Hill slopes were not significantly different from unity (0.91+/-0.04 and 0.99+/-0.02, respectively). Granisetron (1 microM), rilmenidine (3 microM), idazoxan (0.3 microM), pentazocine (3 microM) and 1,3-di-(2-tolyl)guanidine (0.3 microM) had no effect on the binding of [3H]-clobenpropit. 4 The specific binding of [3H]-clobenpropit appeared to reach equilibrium after 25 min at 21+/-3 degrees C and remained constant for >180 min. The estimated pKD' (10.27+/-0.27; n = 3+/-s.e.mean) was not significantly different from that estimated by saturation analysis in the presence of metyrapone. 5 A series of histamine H3-receptor ligands expressed affinity values for sites labelled with [3H]-clobenpropit which were not significantly different from those estimated when [3H]-R-alpha-MH was used to label histamine H3-receptors in guinea-pig cerebral cortex membranes.  (+info)

Degradation of an alkaloid pheromone from the pale-brown chafer, Phyllopertha diversa (Coleoptera: Scarabaeidae), by an insect olfactory cytochrome P450. (8/262)

The pale-brown chafer, Phyllopertha diversa, utilizes an unusual alkaloid, 1,3-dimethyl-2,4-(1H,3H)-quinazolinedione, as its sex pheromone. This compound is rapidly degraded in vitro by the antennal protein extracts from this scarab beetle. Demethylation at the N-1 position and hydroxylation of the aromatic ring have been identified as the major catabolic pathways. The enzyme responsible for the pheromone degradation is membrane-bound, requires NAD(P)H for activity and is sensitive to cytochrome P450 inhibitors, such as proadifen and metyrapone. The ability to metabolize this unusual pheromone was not detected in 12 species tested, indicating that the P450 system, specific to male P. diversa antennae, has evolved as a mechanism for olfactory signal inactivation.  (+info)