Pharmacokinetic analysis of the cardioprotective effect of 3-(2,2, 2-trimethylhydrazinium) propionate in mice: inhibition of carnitine transport in kidney. (1/70)

The site of action of 3-(2,2,2-trimethylhydrazinium) propionate (THP), a new cardioprotective agent, was investigated in mice and rats. I.p. administration of THP decreased the concentrations of free carnitine and long-chain acylcarnitine in heart tissue. In isolated myocytes, THP inhibited free carnitine transport with a Ki of 1340 microM, which is considerably higher than the observed serum concentration of THP. The major cause of the decreased free carnitine concentration in heart was found to be the decreased serum concentration of free carnitine that resulted from the increased renal clearance of carnitine by THP. The estimated Ki of THP for inhibiting the reabsorption of free carnitine in kidneys was 52.2 microM, which is consistent with the serum THP concentration range. No inhibition of THP on the carnitine palmitoyltransferase activity in isolated mitochondrial fractions was observed. These results indicate that the principal site of action of THP as a cardioprotective agent is the carnitine transport carrier in the kidney, but not the carrier in the heart.  (+info)

Pharmacokinetics and biological fate of 3-(2,2, 2-trimethylhydrazinium)propionate dihydrate (MET-88), a novel cardioprotective agent, in rats. (2/70)

In this study, we examined the disposition, metabolism, and excretion of a novel cardioprotective agent, 3-(2,2, 2-trimethylhydrazinium)propionate dihydrate (MET-88), in rats. The disposition of MET-88 after oral and i.v. administration of 2, 20, and 60 mg/kg indicated that the pharmacokinetics of MET-88 were nonlinear. The profiles of radioactive MET-88 and total radioactivity in plasma were consistent at doses of 20 and 60 mg/kg. However, at 2 mg/kg, the plasma MET-88 levels were obviously lower than the total. The excretion of radioactivity after oral administration of MET-88 indicated that increasing doses led to a shift from exhaled CO(2) to urinary excretion as the major excretion route. Major metabolites in plasma after oral administration of MET-88 were glucose, succinic acid, and 3-hydroxypropionic acid, and in vitro studies revealed that MET-88 was converted to 3-hydroxypropionic acid by gamma-butyrobetaine hydroxylase (EC 1.14. 11.1). An isolated liver perfusion system modified to trap CO(2) gas was used to examine the excretion pathway of MET-88. [(14)C]CO(2) gas was decreased by the addition of iodoacetic acid, DL-fluorocitric acid, or gamma-butyrobetaine to this system, and subsequent thin-layer chromatography analyses of perfusates revealed that MET-88 was first converted to 3-hydroxypropionic acid by gamma-butyrobetaine hydroxylase and then was biosynthesized to glucose and metabolized to CO(2) gas via the glycolytic pathway and tricarboxylic acid cycle.  (+info)

Development and characterization of an animal model of carnitine deficiency. (3/70)

Mammals cover their carnitine needs by diet and biosynthesis. The last step of carnitine biosynthesis is the conversion of butyrobetaine to carnitine by butyrobetaine hydroxylase. We investigated the effect of N-trimethyl-hydrazine-3-propionate (THP), a butyrobetaine analogue, on butyrobetaine hydroxylase kinetics, and carnitine biosynthesis and body homeostasis in rats fed a casein-based or a vegetarian diet. The K(m )of butyrobetaine hydroxylase purified from rat liver was 41 +/- 9 micromol x L(-1) for butyrobetaine and 37 +/- 5 micromol x L(-1) for THP, and THP was a competitive inhibitor of butyrobetaine hydroxylase (K(i) 16 +/- 2 micromol x L(-1)). In rats fed a vegetarian diet, renal excretion of total carnitine was increased by THP (20 mg.100 g(-1) x day(-1) for three weeks), averaging 96 +/- 36 and 5.3 +/- 1.2 micromol x day(-1) in THP-treated and control rats, respectively. After three weeks of treatment, the total carnitine plasma concentration (8.8 +/- 2.1 versus 52.8 +/- 11.4 micromol x L(-1)) and tissue levels were decreased in THP-treated rats (liver 0.19 +/- 0.03 versus 0.59 +/- 0.08 and muscle 0.24 +/- 0.04 versus 1.07 +/- 0.13 micromol x g(-1)). Carnitine biosynthesis was blocked in THP-treated rats (-0.22 +/- 0.13 versus 0.57 +/- 0.21 micromol x 100 g(-1) x day(-1)). Similar results were obtained in rats treated with the casein-based diet. THP inhibited carnitine transport by rat renal brush-border membrane vesicles competitively (K(i) 41 +/- 3 micromol x L(-1)). Palmitate metabolism in vivo was impaired in THP-treated rats and the livers showed mixed steatosis. Steady-state mRNA levels of the carnitine transporter rat OCTN2 were increased in THP-treated rats in skeletal muscle and small intestine. In conclusion, THP inhibits butyrobetaine hydroxylase competitively, blocks carnitine biosynthesis in vivo and interacts competitively with renal carnitine reabsorption. THP-treated rats develop systemic carnitine deficiency over three weeks and can therefore serve as an animal model for human carnitine deficiency.  (+info)

Mechanisms of liver steatosis in rats with systemic carnitine deficiency due to treatment with trimethylhydraziniumpropionate. (4/70)

Rats with systemic carnitine deficiency induced by treatment with trimethylhydraziniumpropionate (THP) develop liver steatosis. This study aims to investigate the mechanisms leading to steatosis in THP-induced carnitine deficiency. Rats were treated with THP (20 mg/100 g) for 3 or 6 weeks and were studied after starvation for 24 h. Rats treated with THP had reduced in vivo palmitate metabolism and developed mixed liver steatosis at both time points. The hepatic carnitine pool was reduced in THP-treated rats by 65% to 75% at both time points. Liver mitochondria from THP-treated rats had increased oxidative metabolism of various substrates and of beta-oxidation at 3 weeks, but reduced activities at 6 weeks of THP treatment. Ketogenesis was not affected. The hepatic content of CoA was increased by 23% at 3 weeks and by 40% at 6 weeks in THP treated rats. The cytosolic content of long-chain acyl-CoAs was increased and the mitochondrial content decreased in hepatocytes of THP treated rats, compatible with decreased activity of carnitine palmitoyltransferase I in vivo. THP-treated rats showed hepatic peroxisomal proliferation and increased plasma VLDL triglyceride and phospholipid concentrations at both time points. A reduction in the hepatic carnitine pool is the principle mechanism leading to impaired hepatic fatty acid metabolism and liver steatosis in THP-treated rats. Cytosolic accumulation of long-chain acyl-CoAs is associated with increased plasma VLDL triglyceride, phospholipid concentrations, and peroxisomal proliferation.  (+info)

Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). (5/70)

BACKGROUND: To date, the uptake of drugs into the human heart by transport proteins is poorly understood. A candidate protein is the organic cation transporter novel type 2 (OCTN2) (SLC22A5), physiologically acting as a sodium-dependent transport protein for carnitine. We investigated expression and localization of OCTN2 in the human heart, uptake of drugs by OCTN2, and functional coupling of OCTN2 with the eliminating ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein). METHODS AND RESULTS: Messenger RNA levels of OCTN2 and ABCB1 were analyzed in heart samples by quantitative polymerase chain reaction. OCTN2 was expressed in all auricular samples that showed a pronounced interindividual variability (35 to 1352 copies per 20 ng of RNA). Although a single-nucleotide polymorphism in OCTN2 (G/C at position -207 of the promoter) had no influence on expression, administration of beta-blockers resulted in significantly increased expression. Localization of OCTN2 by in situ hybridization, laser microdissection, and immunofluorescence microscopy revealed expression of OCTN2 mainly in endothelial cells. For functional studies, OCTN2 was expressed in Madin-Darby canine kidney (MDCKII) cells. Using this system, verapamil, spironolactone, and mildronate were characterized both as inhibitors (EC50=25, 26, and 21 micromol/L, respectively) and as substrates. Like OCTN2, ABCB1 was expressed preferentially in endothelial cells. A significant correlation of OCTN2 and ABCB1 expression in the human heart was observed, which suggests functional coupling. Therefore, the interaction of OCTN2 with ABCB1 was tested with double transfectants. This approach resulted in a significantly higher transcellular transport of verapamil, a substrate for both OCTN2 and ABCB1. CONCLUSIONS: OCTN2 is expressed in the human heart and can be modulated by drug administration. Moreover, OCTN2 can contribute to the cardiac uptake of cardiovascular drugs.  (+info)

The carnitine transporter SLC22A5 is not a general drug transporter, but it efficiently translocates mildronate. (6/70)

 (+info)

Protective effects of mildronate in an experimental model of type 2 diabetes in Goto-Kakizaki rats. (7/70)

 (+info)

Effects of ischemia-reperfusion and pretreatment with mildronate on rat liver mitochondrial function. (8/70)

Mildronate (3-(2,2,2-trimethylhydrazinium) propionate), which is mostly used in cardiological practice and is considered an anti-ischemic drug, was designed to inhibit carnitine biosynthesis in order to prevent accumulation of cytotoxic intermediate products of fatty acid beta-oxidation. Recently it was shown that the mitochondrial respiratory chain may also be a target for mildronate action. In this study, we aimed to investigate whether mildronate can protect the liver against a 90-min normothermic ischemia/30-min reperfusion-induced mitochondrial dysfunction. Rats were pre-treated for one or two weeks with mildronate (100 mg/kg/day or 200 mg/kg/day) or Ringer solution and subjected to ischemia/reperfusion.We found that ischemia/reperfusion caused a decrease in mitochondrial State 3 respiration rate and in the respiratory control index (RCI), and an increase in State 2 respiration rate with succinate, glutamate + malate and palmitoyl-L-carnitine + malate. One or two weeks of pre-treatment of rats with different doses of mildronate did not reduce the ischemia/reperfusion-induced decrease in the State 3 respiration rate or RCI; however, a one week pre-treatment slightly diminished the increase in the State 2 respiration rate with glutamate + malate substrates. The leakage of the liver enzymes, aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase, was similar in both the untreated and pre-treated with mildronate groups. No steatotic livers were observed in any experimental groups after mildronate pre-treatment. In conclusion, 90 min of liver ischemia followed by a 30 min reperfusion has a deleterious effect on rat liver mitochondrial function. Mildronate pre-treatment of rats at doses of 100 or 200 mg/kg/day for one or two weeks did not prevent ischemia/reperfusion-induced mitochondrial dysfunction and liver injury.  (+info)