Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. (49/8251)

The spleen focus forming virus (SFFV) gp55-P envelope glycoprotein specifically binds to and activates murine erythropoietin receptors (EpoRs) coexpressed in the same cell, triggering proliferation of erythroid progenitors and inducing erythroleukemia. Here we demonstrate specific interactions between the single transmembrane domains of the two proteins that are essential for receptor activation. The human EpoR is not activated by gp55-P but by mutation of a single amino acid, L238, in its transmembrane sequence to its murine counterpart serine, resulting in its ability to be activated. The converse mutation in the murine EpoR (S238L) abolishes activation by gp55-P. Computational searches of interactions between the membrane-spanning segments of murine EpoR and gp55-P provide a possible explanation: the face of the EpoR transmembrane domain containing S238 is predicted to interact specifically with gp55-P but not gp55-A, a variant which is much less effective in activating the murine EpoR. Mutational studies on gp55-P M390, which is predicted to interact with S238, provide additional support for this model. Mutation of M390 to isoleucine, the corresponding residue in gp55-A, abolishes activation, but the gp55-P M390L mutation is fully functional. gp55-P is thought to activate signaling by the EpoR by inducing receptor oligomerization through interactions involving specific transmembrane residues.  (+info)

Studies on the structure and I-blood-group activity of poly(glycosyl)ceramides. (50/8251)

Employing a modified technique of acetolysis, which allows almost a complete recovery of constituent sugars from poly(glycosyl)ceramides, the glycolipids were found to contain an excess of N-acetylglucosamine over galactose. On the basis of Smith degradation, methylation study, chromium trioxide degradation and the structures of oligosaccharides released from the glycolipids by partial acid hydrolysis, the presence of two types of sugar sequences has been established in poly(glycosyl)ceramides: a) Galbeta1 leads to 4GlcNAcbeta1 leads to 6Gal3 comes from R1 b) Galbeta1 leads to 4GlcNAcbeta1 leads to 4GlcNAc1 leads to R2. The repeating unit of poly(glycosyl)ceramides seems to be the GlcNAcbeta1 leads to 3Gal sequence. The specificity of one anti-I serum (Woj) is directed against the non-reducing ending of the first kind of chain. Three other anti-I sera reacted with inner portions of the oligosaccharide chains of the glycolipids.  (+info)

Clomipramine N-demethylation metabolism in human liver microsomes. (51/8251)

AIM: To study the effect of cytochrome P-450 (CYP450) inhibitors on clomipramine (Clo) N-demethylation in vitro. METHODS: The kinetic parameters of Clo N-demethylation in human liver microsomes were obtained by the Michaelis-Menten equation. The parameters after pretreatment with putative inhibitors of various CYP450 isoforms were compared with controls. RESULTS: K(m1), K(m2), Vmax1, Vmax2, Vmax1/K(m1), and Vmax2/K(m2) were (0.11 +/- 0.06), (24 +/- 14) mumol.L-1, (114 +/- 47), (428 +/- 188) nmol.g-1.min-1, (1.8 +/- 1.6), and (0.019 +/- 0.005) L.g-1.min-1, respectively. The interindividual variations for the last 4 parameters reached up to 2.5-, 7.3-, 3.4-, and 1.8-fold. At 5 mumol.L-1 of Clo, troleandomycin (Tro), furafylline (Fur), ditiocarb sodium (Dit), and S-mephenytoin (Mep) produced a marked inhibition on Clo N-demethylation while sulfaphenazole (Sul) and quinidine (Qui) had only slight effects. The inhibitory rates by Dit 30, Mep 500, Fur 10, Tro 10, Fur 80, Tro 200 and Fur 80 + Tro 200 mumol.L-1 were 27.0%, 32.9%, 42.8%, 40.5%, 63.9%, 66.4%, and 78.3%, respectively. The IC50 (95% confidence limits) for Fur and Tro were 27.7 (19.1-36.3) and 42.1 (20.9-63.3) mumol.L-1, respectively. CONCLUSIONS: The N-demethylation of Clo exhibited a biphasic behavior. This reaction was mediated mainly by both CYP1A2 and CYP3A4, to a minor extent by CYP2C19 at the low concentration of Clo in vitro.  (+info)

Regulation of transcription by a protein methyltransferase. (52/8251)

The p160 family of coactivators, SRC-1, GRIP1/TIF2, and p/CIP, mediate transcriptional activation by nuclear hormone receptors. Coactivator-associated arginine methyltransferase 1 (CARM1), a previously unidentified protein that binds to the carboxyl-terminal region of p160 coactivators, enhanced transcriptional activation by nuclear receptors, but only when GRIP1 or SRC-1a was coexpressed. Thus, CARM1 functions as a secondary coactivator through its association with p160 coactivators. CARM1 can methylate histone H3 in vitro, and a mutation in the putative S-adenosylmethionine binding domain of CARM1 substantially reduced both methyltransferase and coactivator activities. Thus, coactivator-mediated methylation of proteins in the transcription machinery may contribute to transcriptional regulation.  (+info)

Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. (53/8251)

Sertraline, a new antidepressant of the selective serotonin reuptake inhibitor class, is extensively metabolized to desmethylsertraline in humans. We identified the cytochrome P-450 (CYP) isoforms involved in sertraline N-demethylation using pooled human liver microsomes and cDNA-expressed CYP isoforms. Eadie-Hofstee plots for the sertraline N-demethylation in human liver microsomes were monophasic. The estimated Michaelis-Menten kinetic parameters were: KM = 18.1 +/- 2.0 microM, Vmax = 0.45 +/- 0.03 nmol/min/mg of protein, and Vmax/KM = 25.2 +/- 4.3 microl/min/mg of protein. At the substrate concentration of 20 microM, which approximated the apparent KM value, sulfaphenazole (CYP2C9 inhibitor) and triazolam (CYP3A substrate) reduced the N-demethylation activities by 20 to 35% in human liver microsomes, whereas the inhibition induced by mephenytoin (CYP2C19 substrate) or quinidine (CYP2D6 inhibitor) was marginal. The anti-CYP2B6 antibody inhibited the sertraline N-demethylation activities by 35%. Sertraline N-demethylation activities were detected in all cDNA-expressed CYP isoforms studied. In particular, CYP2C19, CYP2B6, CYP2C9-Arg, CYP2D6-Val, and CYP3A4 all showed relatively high activity. When the contributions of CYP2D6, CYP2C9, CYP2B6, CYP2C19, and CYP3A4 were estimated from the Vmax/KM of cDNA-expressed CYP isoforms and from their contents in pooled human liver microsomes, the values were found to be 35, 29, 14, 13, and 9%, respectively. The results suggest that at least five isoforms of CYP (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4) are involved in the sertraline N-demethylation in human liver microsomes and that the contribution of any individual isoform does not exceed 40% of overall metabolism. Therefore, concurrent administration of a drug that inhibits a specific CYP isoform is unlikely to cause a marked increase in the plasma concentration of sertraline.  (+info)

Potent inhibition of cytochrome P-450 2D6-mediated dextromethorphan O-demethylation by terbinafine. (54/8251)

Cytochrome P-450 (CYP) 2D6 is responsible for the biotransformation of over 35 pharmacologic agents. In the process of studying CYP2D6 we identified phenotype-genotype discordance in two individuals receiving terbinafine. This prompted evaluation of the potential for terbinafine to inhibit CYP2D6 in vitro. Human hepatic microsomes and heterologously expressed CYP2D6 were incubated with terbinafine or quinidine and the formation of dextrorphan from dextromethorphan was determined by HPLC. Additionally, preliminary conformational analyses were conducted to determine the fit of terbinafine into a previously described pharmacophore model for CYP2D6 inhibitors. The apparent Km and Vmax of dextrorphan formation from four human hepatic microsome samples ranged from 5.8 to 6.8 microM and from 172 to 300 pmol/min/mg protein, respectively. Values of Km and Vmax in the heterologously expressed CYP2D6 system averaged 6.5 +/- 2.1 microM and 1342 +/- 147 pmol/min/mg protein, respectively. Terbinafine inhibited dextromethorphan O-demethylation with an apparent Ki ranging from 28 to 44 nM in human hepatic microsomes and averaging 22.4 +/- 0.6 nM for the heterologously expressed enzymes. Results of quinidine in these systems produced values for Ki ranging from 18 to 43 nM. Such strong inhibition of CYP2D6 by terbinafine would not have been predicted by the previously proposed pharmacophore model of CYP2D6 inhibitors based on molecular structure. Terbinafine is a potent inhibitor of CYP2D6 with apparent Ki values well below plasma and tissue concentrations typically achieved during a therapeutic course. This agent needs to be evaluated in vivo to determine the impact of CYP2D6 inhibition by terbinafine on the metabolism of concomitantly administered CYP2D6 substrates.  (+info)

Probing the reactivity of nucleophile residues in human 2,3-diphosphoglycerate/deoxy-hemoglobin complex by aspecific chemical modifications. (55/8251)

The use of aspecific methylation reaction in combination with MS procedures has been employed for the characterization of the nucleophilic residues present on the molecular surface of the human 2,3-diphosphoglycerate/deoxy-hemoglobin complex. In particular, direct molecular weight determinations by ESMS allowed to control the reaction conditions, limiting the number of methyl groups introduced in the modified globin chains. A combined LCESMS-Edman degradation approach for the analysis of the tryptic peptide mixtures yielded to the exact identification of methylation sites together with the quantitative estimation of their degree of modification. The reactivities observed were directly correlated with the pKa and the relative surface accessibility of the nucleophilic residues, calculated from the X-ray crystallographic structure of the protein. The results here described indicate that this methodology can be efficiently used in aspecific modification experiments directed to the molecular characterization of the surface topology in proteins and protein complexes.  (+info)

Synthetic substrate analogs for the RNA-editing adenosine deaminase ADAR-2. (56/8251)

We have synthesized structural analogs of a natural RNA editing substrate and compared editing reactions of these substrates by recombinant ADAR-2, an RNA-editing adenosine deaminase. Deamination rates were shown to be sensitive to structural changes at the 2[prime]-carbon of the edited adenosine. Methylation of the 2[prime]-OH caused a large decrease in deamination rate, whereas 2[prime]-deoxyadenosine and 2[prime]-deoxy-2[prime]-fluoroadenosine were deaminated at a rate similar to adenosine. In addition, a duplex containing as few as 19 bp of the stem structure adjacent to the R/G editing site of the GluR-B pre-mRNA supports deamination of the R/G adenosine by ADAR-2. This identification and initial characterization of synthetic RNA editing substrate analogs further defines structural elements in the RNA that are important for the deamination reaction and sets the stage for additional detailed structural, thermodynamic and kinetic studies of the ADAR-2 reaction.  (+info)