An investigation into the binding of the carcinogen 15,16-dihydro-11-methylcyclopenta[a]phenanthren-17-one to DNA in vitro. (1/8251)

After metabolic activation the carcinogen 15,16-dihydro-11-[3H]methylcyclopenta[a]phenanthren-17-one binds to DNA in vitro, and this binding is prevented by 7,8-benzoflavone. Radioactivity cannot be removed from the DNA with organic solvents or by chromatography on Sephadex G-50, even after heat denaturation of the DNA. Enzymatic hydrolysis yields radioactive fractions, which elute from a column of Sephadex LH-20 immediately after the natural nucleosides. At least two species of reactive metabolites are involved in this bending, those with a half-life of a few hr and others with greater stability. After extraction from the aqueous incubation mixture, they could be detected in discrete polar fractions from separations of the complex metabolite mixture by high-pressure liquid chromatography. Their ability to bind to DNA decreased with time at ambient temperature, and they were rapidly deactivated by acid. 7,8-Benzolflavone acted by suppressing the formation of polar metabolites derived from enzymatic oxidation of the aromatic double bonds. The inhibitor had no effect on the enzymes hydroxylating saturated carbon; hence it is unlikely that metabolism of the methyl group is important in conversion of this carcinogen to its proximate form, although the presence of the 11-methyl group is essential for carcinogenic activity in this series.  (+info)

Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3'-end formation. (2/8251)

Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrplp is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrpl p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrpl p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.  (+info)

A computational screen for methylation guide snoRNAs in yeast. (3/8251)

Small nucleolar RNAs (snoRNAs) are required for ribose 2'-O-methylation of eukaryotic ribosomal RNA. Many of the genes for this snoRNA family have remained unidentified in Saccharomyces cerevisiae, despite the availability of a complete genome sequence. Probabilistic modeling methods akin to those used in speech recognition and computational linguistics were used to computationally screen the yeast genome and identify 22 methylation guide snoRNAs, snR50 to snR71. Gene disruptions and other experimental characterization confirmed their methylation guide function. In total, 51 of the 55 ribose methylated sites in yeast ribosomal RNA were assigned to 41 different guide snoRNAs.  (+info)

Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. (4/8251)

BACKGROUND: Conventional cytologic analysis of sputum is an insensitive test for the diagnosis of non-small-cell lung cancer (NSCLC). We have recently demonstrated that polymerase chain reaction (PCR)-based molecular methods are more sensitive than cytologic analysis in diagnosing bladder cancer. In this study, we examined whether molecular assays could identify cancer cells in bronchoalveolar lavage (BAL) fluid. METHODS: Tumor-specific oncogene mutations, CpG-island methylation status, and microsatellite alterations in the DNA of cells in BAL fluid from 50 consecutive patients with resectable (stages I through IIIa) NSCLC were assessed by use of four PCR-based techniques. RESULTS: Of 50 tumors, 28 contained a p53 mutation, and the identical mutation was detected with a plaque hybridization assay in the BAL fluid of 39% (11 of 28) of the corresponding patients. Eight of 19 adenocarcinomas contained a K-ras mutation, and the identical mutation was detected with a mutation ligation assay in the BAL fluid of 50% (four of eight) of the corresponding patients. The p16 gene was methylated in 19 of 50 tumors, and methylated p16 alleles were detected in the BAL fluid of 63% (12 of 19) of the corresponding patients. Microsatellite instability in at least one marker was detected with a panel of 15 markers frequently altered in NSCLC in 23 of 50 tumors; the identical alteration was detected in the BAL fluid of 14% (three of 22) of the corresponding patients. When all four techniques were used, mutations or microsatellite instability was detected in the paired BAL fluid of 23 (53%) of the 43 patients with tumors carrying a genetic alteration. CONCLUSION: Although still limited by sensitivity, molecular diagnostic strategies can detect the presence of neoplastic cells in the proximal airway of patients with surgically resectable NSCLC.  (+info)

Association between nonrandom X-chromosome inactivation and BRCA1 mutation in germline DNA of patients with ovarian cancer. (5/8251)

BACKGROUND: Most human female cells contain two X chromosomes, only one of which is active. The process of X-chromosome inactivation, which occurs early in development, is usually random, producing tissues with equal mixtures of cells having active X chromosomes of either maternal or paternal origin. However, nonrandom inactivation may occur in a subset of females. If a tumor suppressor gene were located on the X chromosome and if females with a germline mutation in one copy of that suppressor gene experienced nonrandom X-chromosome inactivation, then some or all of the tissues of such women might lack the wild-type suppressor gene function. This scenario could represent a previously unrecognized mechanism for development of hereditary cancers. We investigated whether such a mechanism might contribute to the development of hereditary ovarian cancers. METHODS: Patterns of X-chromosome inactivation were determined by means of polymerase chain reaction amplification of the CAG-nucleotide repeat of the androgen receptor (AR) gene after methylation-sensitive restriction endonuclease digestion of blood mononuclear cell DNA from patients with invasive (n = 213) or borderline (n = 44) ovarian cancer and control subjects without a personal or family history of cancer (n = 50). BRCA1 gene status was determined by means of single-strand conformational polymorphism analysis and DNA sequencing. All statistical tests were two-sided. RESULTS AND CONCLUSIONS: Among individuals informative for the AR locus, nonrandom X-chromosome inactivation was found in the DNA of 53% of those with invasive cancer versus 28% of those with borderline cancer (P = .005) and 33% of healthy control subjects (P = .016). Nonrandom X-chromosome inactivation can be a heritable trait. Nine of 11 AR-informative carriers of germline BRCA1 mutations demonstrated nonrandom X-chromosome inactivation (.0002 < P < .008, for simultaneous occurrence of both). IMPLICATIONS: Nonrandom X-chromosome inactivation may be a predisposing factor for the development of invasive, but not borderline, ovarian cancer.  (+info)

Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. (6/8251)

A new metabolic signaling pathway for arginine, both a chemoeffector and a fermentative energy source, is described for Halobacterium salinarum. Systematic screening of 80+ potentially chemotactic compounds with two behavioral assays identified leucine, isoleucine, valine, methionine, cysteine, arginine and several peptides as strong chemoattractants. Deletion analysis of a number of potential halobacterial transducer genes led to the identification of Car, a specific cytoplasmic arginine transducer which lacks transmembrane helices and was biochemically shown to be localized in the cytoplasm. Flow assays were used to show specific adaptive responses to arginine and ornithine in wild-type but not Deltacar cells, demonstrating the role of Car in sensing arginine. The signaling pathway from external arginine to the flagellar motor of the cell involves an arginine:ornithine antiporter which was quantitatively characterized for its transport kinetics and inhibitors. By compiling the chemotactic behavior, the adaptive responses and the characteristics of the arginine:ornithine antiporter to arginine and its analogs, we now understand how the combination of arginine uptake and its metabolic conversion is required to build an effective sensing system. In both bacteria and the archaea this is the first chemoeffector molecule of a soluble methylatable transducer to be identified.  (+info)

Sites of reaction of pilocarpine. (7/8251)

Analysis of the sites of reaction of a biologically important compound, pilocarpine, a molecule with imidazole and butyrolactone rings connected by a methylene bridge, has been accomplished in a quadrupole ion trap with the aim of characterizing its structure/reactivity relationships. Ion-molecule reactions of pilocarpine with chemical ionizing agents, dimethyl ether (DME), 2-methoxyethanol, and trimethyl borate (TMB), along with collision-activated dissociation elucidated the reaction sites of pilocarpine and made possible the comparison of structural features that affect sites of reaction. Based on MS/MS experiments, methylation occurs on the imidazole ring upon reactions with CH3OCH2+ or (CH3OCH2CH2OH)H+ ions but methylation occurs on the lactone ring for reactions with (CH3O)2B+ ions. Bracketing experiments with two model compounds, alpha-methyl-gamma-butyrolactone and N-methyl imidazole, show the imidazole ring to have a greater gas-phase basicity and methyl cation affinity than the lactone ring. The contrast of methylation by TMB ions on the lactone ring is explained by initial addition of the dimethoxyborinium ion, (CH3O)2B+, on the imidazole ring with subsequent collisional activation promoting an intramolecular transfer of a methyl group to the lactone ring with concurrent loss of CH3OBO. Semiempirical molecular orbital calculations are undertaken to further address the favored reaction sites.  (+info)

In vivo nuclease hypersensitivity studies reveal multiple sites of parental origin-dependent differential chromatin conformation in the 150 kb SNRPN transcription unit. (8/8251)

Human chromosome region 15q11-q13 contains a cluster of oppositely imprinted genes. Loss of the paternal or the maternal alleles by deletion of the region or by uniparental disomy 15 results in Prader-Willi syndrome (PWS) or Angelman syndrome (AS), respectively. Hence, the two phenotypically distinct neurodevelopmental disorders are caused by the lack of products of imprinted genes. Subsets of PWS and AS patients exhibit 'imprinting mutations', such as small microdeletions within the 5' region of the small nuclear ribonucleoprotein polypeptide N ( SNRPN ) transcription unit which affect the transcriptional activity and methylation status of distant imprinted genes throughout 15q11-q13 in cis. To elucidate the mechanism of these long-range effects, we have analyzed the chromatin structure of the 150 kb SNRPN transcription unit for DNase I- and Msp I-hypersensitive sites. By using an in vivo approach on lymphoblastoid cell lines from PWS and AS individuals, we discovered that the SNRPN exon 1 is flanked by prominent hypersensitive sites on the paternal allele, but is completely inaccessible to nucleases on the maternal allele. In contrast, we identified several regions of increased nuclease hypersensitivity on the maternal allele, one of which coincides with the AS minimal microdeletion region and another lies in intron 1 immediately downstream of the paternal-specific hypersensitive sites. At several sites, parental origin-specific nuclease hypersensitivity was found to be correlated with hypermethylation on the allele contributed by the other parent. The differential parental origin-dependent chromatin conformations might govern access of regulatory protein complexes and/or RNAs which could mediate interaction of the region with other genes.  (+info)