Windows through the dusty disks surrounding the youngest low-mass protostellar objects. (49/1719)

The formation and evolution of young low-mass stars are characterized by important processes of mass loss and accretion occurring in the innermost regions of their placentary circumstellar disks. Because of the large obscuration of these disks at optical and infrared wavelengths in the early protostellar stages (class 0 sources), they were previously detected only at radio wavelengths using interferometric techniques. We have detected with the Infrared Space Observatory the mid-infrared (mid-IR) emission associated with the class 0 protostar VLA1 in the HH1-HH2 region located in the Orion nebula. The emission arises in three wavelength windows (at 5. 3, 6.6, and 7.5 micrometers) where the absorption due to ices and silicates has a local minimum that exposes the central part of the young protostellar system to mid-IR investigations. The mid-IR emission arises from a central source with a diameter of 4 astronomical units at an averaged temperature of approximately 700 K, deeply embedded in a dense region with a visual extinction of 80 to 100 magnitudes.  (+info)

Membrane-induced conformational change in human apolipoprotein H. (50/1719)

The interaction of apolipoprotein H (Apo H) with lipid membrane has been considered to be a basic mechanism for the biological function of the protein. Previous reports have demonstrated that Apo H can interact only with membranes containing anionic phospholipids. Here we study the membrane-induced conformational change of Apo H by CD spectroscopy with two different model systems: anionic-phospholipid-containing liposomes [such as 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and cardiolipin], and the water/methanol mixtures at moderately low pH, which mimic the micro-physicochemical environment near the membrane surface. It is found that Apo H undergoes a remarkable conformational change on interaction with liposomes containing anionic phospholipid. To interact with liposomes containing DMPG, there is a 6.8% increase in alpha-helix in the secondary structures; in liposomes containing cardiolipin, however, there is a 12.6% increase in alpha-helix and a 9% decrease in beta-sheet. The similar conformation change in Apo H can be induced by treatment with an appropriate mixture of water/methanol. The results indicate that the association of Apo H with membrane is correlated with a certain conformational change in the secondary structure of the protein.  (+info)

Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. (51/1719)

Using (13)C-NMR, we demonstrate that [(13)C]methanol readily entered sycamore (Acer pseudoplatanus L.) cells to be slowly metabolized to [3-(13)C]serine, [(13)CH(3)]methionine, and [(13)CH(3)]phosphatidylcholine. We conclude that the assimilation of [(13)C]methanol occurs through the formation of (13)CH(3)H(4)Pte-glutamate (Glu)(n) and S-adenosyl-methionine, because feeding plant cells with [3-(13)CH(3)]serine, the direct precursor of (13)CH(2)H(4)Pte-Glu(n), can perfectly mimic [(13)CH(3)]methanol for folate-mediated single-carbon metabolism. On the other hand, the metabolism of [(13)C]methanol in plant cells revealed assimilation of label into a new cellular product that was identified as [(13)CH(3)]methyl-beta-D-glucopyranoside. The de novo synthesis of methyl-beta-D-glucopyranoside induced by methanol did not require the formation of (13)CH(3)H(4)Pte-Glu(n) and was very likely catalyzed by a "transglycosylation" process.  (+info)

Color-sensitive motility and methanol release responses in Rhodobacter sphaeroides. (52/1719)

Blue-light-induced repellent and demethylation responses, characteristic of behavioral adaptation, were observed in Rhodobacter sphaeroides. They were analyzed by computer-assisted motion analysis and through the release of volatile tritiated compounds from [methyl-(3)H]methionine-labeled cells, respectively. Increases in the stop frequency and the rate of methanol release were induced by exposure of cells to repellent light signals, such as an increase in blue- and a decrease in infrared-light intensity. At a lambda of >500 nm the amplitude of the methanol release response followed the absorbance spectrum of the photosynthetic pigments, suggesting that they function as photosensors for this response. In contrast to the previously reported motility response to a decrease in infrared light, the blue-light response reported here does not depend on the number of photosynthetic pigments per cell, suggesting that it is mediated by a separate sensor. Therefore, color discrimination in taxis responses in R. sphaeroides involves two photosensing systems: the photosynthetic pigments and an additional photosensor, responding to blue light. The signal generated by the former system could result in the migration of cells to a light climate beneficial for photosynthesis, while the blue-light system could allow cells to avoid too-high intensities of (harmful) blue light.  (+info)

Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. (53/1719)

The Bacillus subtilis McpB is a class III chemotaxis receptor, from which methanol is released in response to all stimuli. McpB has four putative methylation sites based upon the Escherichia coli consensus sequence. To explore the nature of methanol release from a class III receptor, all combinations of putative methylation sites Gln(371), Gln(595), Glu(630), and Glu(637) were substituted with aspartate, a conservative substitution that effectively eliminates methylation. McpB((Q371D,E630D,E637D)) in a Delta(mcpA mcpB tlpA tlpB)101::cat mcpC4::erm background failed to release methanol in response to either the addition or removal of the McpB-mediated attractant asparagine. In the same background, McpB((E630D,E637D)) produced methanol only upon asparagine addition, whereas McpB((Q371D,E630D)) produced methanol only upon asparagine removal. Thus methanol release from McpB was selective. Mutants unable to methylate site 637 but able to methylate site 630 had high prestimulus biases and were incapable of adapting to asparagine addition. Mutants unable to methylate site 630 but able to methylate site 637 had low prestimulus biases and were impaired in adaptation to asparagine removal. We propose that selective methylation of these two sites represents a method of adaptation novel from E. coli and present a model in which a charged residue rests between them. The placement of this charge would allow for opposing electrostatic effects (and hence opposing receptor conformational changes). We propose that CheC, a protein not found in enteric systems, has a role in regulating this selective methylation.  (+info)

Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. (54/1719)

Methanosarcina semesiae MD1T (T = type strain), a novel obligately methylotrophic methanogenic archaeon is described. Strain MD1T was isolated from an enrichment on dimethylsulfide inoculated with mangrove sediment. The cells were irregularly coccoid, non-motile, 1.4+/-0.2 microm in diameter and stained Gram-positive. The catabolic substrates used included dimethylsulfide, methanethiol, methanol and methylated amines, but not acetate, formate, H2/CO2 or a combination of these substrates. When cells grown on dimethylsulfide were transferred to trimethylamine or methanol and vice versa, a lag phase was observed. The same lag phase occurred when cells grown on trimethylamine were transferred to methanol and vice versa, indicating that for each substrate different enzymes were induced. Fastest growth occurred within a temperature range of 30-35 degrees C and a pH of 6.5-7.5. Both Na+ and Mg2+ were required for growth, with maximum growth rates at 200-600 mM Na+ and 20-100 mM Mg2+. The cells exhibited specific growth rates (h-1) of 0.07+/-0.02, 0.15+/-0.04 and 0.18-/+0.05 on dimethylsulfide, methanol and trimethylamine, respectively. Analysis of the 16S rRNA gene sequence showed that strain MD1T was phylogenetically closely related to members of the genus Methanosarcina, but clearly differed from all described species of this genus (94-97% sequence similarity).  (+info)

Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. (55/1719)

Cell extracts of Methylobacterium extorquens AM1 were recently found to catalyze the dehydrogenation of methylene tetrahydromethanopterin (methylene H4MPT) with NAD+ and NADP+. The purification of a 32-kDa NADP-specific methylene H4MPT dehydrogenase (MtdA) was described already. Here we report on the characterization of a second methylene H4MPT dehydrogenase (MtdB) from this aerobic alpha-proteobacterium. Purified MtdB with an apparent molecular mass of 32 kDa was shown to catalyze the oxidation of methylene H4MPT to methenyl H4MPT with NAD+ and NADP+ via a ternary complex catalytic mechanism. The Km for methylene H4MPT was 50 microM with NAD+ (Vmax = 1100 U x mg(-1) and 100 microM with NADP+ (Vmax = 950 U x mg(-1). The Km value for NAD+ was 200 microM and for NADP+ 20 microM. In contrast to MtdA, MtdB could not catalyze the dehydrogenation of methylene tetrahydrofolate. Via the N-terminal amino-acid sequence, the MtdB encoding gene was identified to be orfX located in a cluster of genes whose translated products show high sequence identities to enzymes previously found only in methanogenic and sulfate reducing archaea. Despite its location, MtdB did not show sequence similarity to archaeal enzymes. The highest similarity was to MtdA, whose encoding gene is located outside of the archaeal island. Mutants defective in MtdB were unable to grow on methanol and showed a pronounced sensitivity towards formaldehyde. On the basis of the mutant phenotype and of the kinetic properties, possible functions of MtdB and MtdA are discussed. We also report that both MtdB and MtdA can be heterologously overproduced in Escherichia coli making these two enzymes readily available for structural analysis.  (+info)

Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases. (56/1719)

Highly purified Aplysia californica ADP-ribosyl cyclase was found to be a multifunctional enzyme. In addition to the known transformation of NAD(+) into cADP-ribose this enzyme is able to catalyse the solvolysis (hydrolysis and methanolysis) of cADP-ribose. This cADP-ribose hydrolase activity, which becomes detectable only at high concentrations of the enzyme, is amplified with analogues such as pyridine adenine dinucleotide, in which the cleavage rate of the pyridinium-ribose bond is much reduced compared with NAD(+). Although the specificity ratio V(max)/K(m) is in favour of NAD(+) by 4 orders of magnitude, this multifunctionality allowed us to propose a 'partitioning' reaction scheme for the Aplysia enzyme, similar to that established previously for mammalian CD38/NAD(+) glycohydrolases. This mechanism involves the formation of a single oxocarbenium-type intermediate that partitions to cADP-ribose and solvolytic products via competing pathways. In favour of this mechanism was the finding that the enzyme also catalysed the hydrolysis of NMN(+), a substrate that cannot undergo cyclization. The major difference between the mammalian and the invertebrate enzymes resides in their relative cyclization/hydrolysis rate-constant ratios, which dictate their respective yields of cADP-ribose (ADP-ribosyl cyclase activity) and ADP-ribose (NAD(+) glycohydrolase activity). For the Aplysia enzyme's catalysed transformation of NAD(+) we favour a mechanism where the formation of cADP-ribose precedes that of ADP-ribose; i.e. macroscopically the invertebrate ADP-ribosyl cyclase conforms to a sequential reaction pathway as a limiting form of the partitioning mechanism.  (+info)