(1/1817) Sequential PKC- and Cdc2-mediated phosphorylation events elicit zebrafish nuclear envelope disassembly.

Molecular markers of the zebrafish inner nuclear membrane (NEP55) and nuclear lamina (L68) were identified, partially characterized and used to demonstrate that disassembly of the zebrafish nuclear envelope requires sequential phosphorylation events by first PKC, then Cdc2 kinase. NEP55 and L68 are immunologically and functionally related to human LAP2beta and lamin B, respectively. Exposure of zebrafish nuclei to meiotic cytosol elicits rapid phosphorylation of NEP55 and L68, and disassembly of both proteins. L68 phosphorylation is completely inhibited by simultaneous inhibition of Cdc2 and PKC and only partially blocked by inhibition of either kinase. NEP55 phosphorylation is completely prevented by inhibition or immunodepletion of cytosolic Cdc2. Inhibition of cAMP-dependent kinase, MEK or CaM kinase II does not affect NEP55 or L68 phosphorylation. In vitro, nuclear envelope disassembly requires phosphorylation of NEP55 and L68 by both mammalian PKC and Cdc2. Inhibition of either kinase is sufficient to abolish NE disassembly. Furthermore, novel two-step phosphorylation assays in cytosol and in vitro indicate that PKC-mediated phosphorylation of L68 prior to Cdc2-mediated phosphorylation of L68 and NEP55 is essential to elicit nuclear envelope breakdown. Phosphorylation elicited by Cdc2 prior to PKC prevents nuclear envelope disassembly even though NEP55 is phosphorylated. The results indicate that sequential phosphorylation events elicited by PKC, followed by Cdc2, are required for zebrafish nuclear disassembly. They also argue that phosphorylation of inner nuclear membrane integral proteins is not sufficient to promote nuclear envelope breakdown, and suggest a multiple-level regulation of disassembly of nuclear envelope components during meiosis and at mitosis.  (+info)

(2/1817) Sexual dimorphism in white campion: deletion on the Y chromosome results in a floral asexual phenotype.

White campion is a dioecious plant with heteromorphic X and Y sex chromosomes. In male plants, a filamentous structure replaces the pistil, while in female plants the stamens degenerate early in flower development. Asexual (asx) mutants, cumulating the two developmental defects that characterize the sexual dimorphism in this species, were produced by gamma ray irradiation of pollen and screening in the M1 generation. The mutants harbor a novel type of mutation affecting an early function in sporogenous/parietal cell differentiation within the anther. The function is called stamen-promoting function (SPF). The mutants are shown to result from interstitial deletions on the Y chromosome. We present evidence that such deletions tentatively cover the central domain on the (p)-arm of the Y chromosome (Y2 region). By comparing stamen development in wild-type female and asx mutant flowers we show that they share the same block in anther development, which results in the production of vestigial anthers. The data suggest that the SPF, a key function(s) controlling the sporogenous/parietal specialization in premeiotic anthers, is genuinely missing in females (XX constitution). We argue that this is the earliest function in the male program that is Y-linked and is likely responsible for "male dimorphism" (sexual dimorphism in the third floral whorl) in white campion. More generally, the reported results improve our knowledge of the structural and functional organization of the Y chromosome and favor the view that sex determination in this species results primarily from a trigger signal on the Y chromosome (Y1 region) that suppresses female development. The default state is therefore the ancestral hermaphroditic state.  (+info)

(3/1817) Karyotyping of human oocytes by chromosomal analysis of the second polar bodies.

This paper describes a method for obtaining metaphase chromosomes from human second polar bodies. The second polar body nucleus was injected into the cytoplasm of an enucleated oocyte, which is activated shortly after injection. When the polar body nucleus is transformed into a haploid pronucleus, treatment with okadaic acid was used to induce premature chromosome condensation. A total of 25 analysable chromosome plates were obtained from 38 polar bodies karyotyped using this technique. Whole chromosome painting was used to detect second polar bodies (and respectively, oocytes) with unbalanced translocations. In combination with the first polar body analysis, this technique may be useful in preimplantation genetic diagnosis for patients carrying maternal translocations.  (+info)

(4/1817) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation.

Individual chromosomes are not directly visible within the interphase nuclei of most somatic cells; they can only be seen during mitosis. We have developed a method that allows DNA strands to be observed directly in living cells, and we use it to analyze how mitotic chromosomes form. A fluorescent analogue (e.g., Cy5-dUTP) of the natural precursor, thymidine triphosphate, is introduced into cells, which are then grown on the heated stage of a confocal microscope. The analogue is incorporated by the endogenous enzymes into DNA. As the mechanisms for recognizing and removing the unusual residues do not prevent subsequent progress around the cell cycle, the now fluorescent DNA strands can be followed as they assemble into chromosomes, and segregate to daughters and granddaughters. Movies of such strands in living cells suggest that chromosome axes follow simple recognizable paths through their territories during G2 phase, and that late replicating regions maintain their relative positions as prophase chromosomes form. Quantitative analysis confirms that individual regions move little during this stage of chromosome condensation. As a result, the gross structure of an interphase chromosome territory is directly related to that of the prophase chromosome.  (+info)

(5/1817) Polymorphisms for the size of heterochromatic regions allow sex-independent quantification of post-BMT chimerism targeting metaphase and interphase cells.

BACKGROUND AND OBJECTIVE: Fully quantitative cytological techniques for the analysis of hemopoietic chimerism are very limited and largely restricted to sex-chromosome detection after sex-mismatched bone marrow transplants (BMTs). The aim of the present investigation was to assess the usefulness of autosomal polymorphisms for the size of heterochromatic regions in the identification of donor and recipient cells and therefore in the quantification of the hemopoietic chimerism after sex-matched BMT. DESIGN AND METHODS: Hemopoietic chimerism was followed up in 3 transplanted patients targeting a polymorphism for the size of the pericentromeric heterochromatin (PCH) of chromosome 9, uncovered by restriction endonuclease (RE) in situ digestion (REISD) with the RE Sau3A, to differentiate donor and recipient cells on conventional bone marrow chromosome preparations. RESULTS: The polymorphism for the size of the PCH of chromosome 9 allowed differentiation of donor and recipient cells targeting both metaphase and interphase nuclei. The misidentification error for the polymorphism for the size of HPC of chromosome 9 was estimated as 1% for metaphases and 6-11% for interphases. The 3 cases studied showed complete chimerism in the first post-BMT sample analyzed, which was maintained in 2 of them. One patient relapsed and showed transient mixed chimerism. One month later, this patient achieved a second complete remission, showing complete chimerism again. In this patient, who received a sex-mismatched BMT, chimerism was also quantified by sex-chromosome identification using established methods, such as conventional cytogenetics and FISH, and the results obtained were similar to those rendered by Sau3A-REISD. INTERPRETATION AND CONCLUSIONS: The polymorphism for the size of the PCH of chromosome 9 uncovered by Sau3A-REISD allows accurate quantification of the hemopoietic chimerism after sex-matched BMT.  (+info)

(6/1817) Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients.

Patients with polycystic ovarian syndrome (PCOS) have higher miscarriage rates. It is postulated that this is caused by a lower rate of mature oocytes, and a lower quality of embryos. Retrospectively we analysed 51 intracytoplasmic sperm injection (ICSI) cycles of 31 PCOS patients. These data were compared to age-matched controls (105 cycles) during the same period. All patients of both groups received gonadotrophin-releasing hormone (GnRH) agonists prior to gonadotrophin treatment. The rate of metaphase II oocytes (MII) was not different. However, the mean absolute number of normally fertilized oocytes was significantly higher in PCOS patients (5.00 versus 3.56, P < 0.01), due to a higher number of oocytes retrieved. More embryos were transferred by cycle in the PCOS group (2.69 versus 2.17, P < 0.05), with a higher cumulative embryo score. The overall and multiple pregnancy rate showed no differences and the clinical abortion rate was lower (21 versus 41.67%, P < 0.05) in the controls. Our findings demonstrate that negative factors unconnected to oocyte morphology must be present in PCOS patients. It is possible that only cytoplasmic, not nuclear, maturity is influenced in these patients.  (+info)

(7/1817) Rapid visualization of metaphase chromosomes in single human blastomeres after fusion with in-vitro matured bovine eggs.

The present study was aimed to facilitate karyotyping of human blastomeres using the metaphase-inducing factors present in unfertilized eggs. A rapid technique for karyotyping would have wide application in the field of preimplantation genetic diagnosis. When cryopreserved in-vitro matured bovine oocytes were fused with human blastomeres, the transferred human nuclei were forced into metaphase within a few hours. Eighty-seven human blastomeres from abnormal or arrested embryos were fused with bovine oocytes in a preclinical study. Fusion efficiency was 100%. In 21 of the hybrid cells, no trace of human chromatin was found. Of the remaining 66, 64 (97%) yielded chromosomes suitable for analysis. The method was used to karyotype embryos from two patients with maternal translocations. One embryo which was judged to be karyotypically normal was replaced in the first patient, resulting in one pregnancy with a normal fetus. None of the second patient's embryos was diagnosed as normal, and hence none was transferred. The results of the present study demonstrated that the ooplasmic factors which induce and maintain metaphase in bovine oocytes can force transferred human blastomere nuclei into premature metaphase, providing the basis for a rapid method of karyotyping blastomeres from preimplantation embryos and, by implication, cells from other sources.  (+info)

(8/1817) Karyotypes on three species of Chinese mesogastropod snails, Semisulcospira libertina, S. dolichostoma and Viviparus rivularis.

Three species of the families Viviparidae and Pleuroceridae, the first intermediate host of paragonimiasis, metagonimiasis and echinostomiasis were studied cytologically. The observed diploid chromosome number was as follows: Semisulcospira libertina 36, S. dolichostoma 34, and Viviparus rivularis 64. The mitotic chromosome complement of S. libertina has nine metacentric pairs and nine submetacentric pairs, and S. dolichostoma has three metacentric pairs and 14 submetacentric pairs of chromosomes. Viviparus rivularis showed two metacentric pairs and 30 submetacentric pairs of chromosomes.  (+info)