Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p. (1/74)

Wilson disease (WD) and Menkes disease (MNK) are inherited disorders of copper metabolism. The genes that mutate to give rise to these disorders encode highly homologous copper transporting ATPases. We use yeast and mammalian two-hybrid systems, along with an in vitro assay to demonstrate a specific, copper-dependent interaction between the six metal-binding domains of the WD and MNK ATPases and the cytoplasmic copper chaperone HAH1. We demonstrate that several metal-binding domains interact independently or in combination with HAH1p, although notably domains five and six of WDp do not. Alteration of either the Met or Thr residue of the HAH1p MTCXXC motif has no observable effect on the copper-dependent interaction, whereas alteration of either of the two Cys residues abolishes the interaction. Mutation of any one of the HAH1p C-terminal Lys residues (Lys(56), Lys(57), or Lys(60)) to Gly does not affect the interaction, although deletion of the 15 C-terminal residues abolishes the interaction. We show that apo-HAH1p can bind in vitro to copper-loaded WDp, suggesting reversibility of copper transfer from HAH1p to WD/MNKp. The in vitro HAH1/WDp interaction is metalospecific; HAH1 preincubated with Cu(2+) or Hg(+) but not with Zn(2+), Cd(2+), Co(2+), Ni(3+), Fe(3+), or Cr(3+) interacted with WDp. Finally, we model the protein-protein interaction and present a theoretical representation of the HAH1p.Cu.WD/MNKp complex.  (+info)

Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. (2/74)

The delivery of copper to specific sites within the cell is mediated by distinct intracellular carrier proteins termed copper chaperones. Previous studies in Saccharomyces cerevisiae suggested that the human copper chaperone HAH1 may play a role in copper trafficking to the secretory pathway of the cell. In this current study, HAH1 was detected in lysates from multiple human cell lines and tissues as a single-chain protein distributed throughout the cytoplasm and nucleus. Studies with a glutathione S-transferase-HAH1 fusion protein demonstrated direct protein-protein interaction between HAH1 and the Wilson disease protein, which required the cysteine copper ligands in the amino terminus of HAH1. Consistent with these in vitro observations, coimmunoprecipitation experiments revealed that HAH1 interacts with both the Wilson and Menkes proteins in vivo and that this interaction depends on available copper. When these studies were repeated utilizing three disease-associated mutations in the amino terminus of the Wilson protein, a marked diminution in HAH1 interaction was observed, suggesting that impaired copper delivery by HAH1 constitutes the molecular basis of Wilson disease in patients harboring these mutations. Taken together, these data provide a mechanism for the function of HAH1 as a copper chaperone in mammalian cells and demonstrate that this protein is essential for copper homeostasis.  (+info)

Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity. (3/74)

Copper is essential for the growth and development of mammalian cells. The key role in the intracellular distribution of copper belongs to the recently discovered family of metallochaperones and to copper-transporting P-type ATPases. The mutations in the ATPase ATP7B, the Wilson's disease protein (WNDP), lead to intracellular accumulation of copper and severe hepatic and neurological abnormalities. Several of these mutations were shown to disrupt the protein-protein interactions between WNDP and the metallochaperone Atox1, suggesting that these interactions are important for normal copper homeostasis. To understand the functional consequences of the Atox1-WNDP interaction at the molecular level, we produced recombinant Atox1 and characterized its effects on WNDP. We demonstrate that Atox1 transfers copper to the purified amino-terminal domain of WNDP (N-WNDP) in a dose-dependent and saturable manner. A maximum of six copper atoms can be transferred to N-WNDP by the chaperone. Furthermore, the incubation of copper Atox1 with the full-length WNDP leads to the stimulation of the WNDP catalytic activity, providing strong evidence for the direct effect of Atox1 on the function of this transporter. Our data also suggest that Atox1 can regulate the copper occupancy of WNDP. The incubation with apo-Atox1 results in the removal of copper from the metalated N-WNDP and apparent down-regulation of WNDP activity. Interestingly, at least one copper atom remains tightly bound to N-WNDP even in the presence of excess apo-Atox1. We suggest that this incomplete reversibility reflects the functional non-equivalency of the metal-binding sites in WNDP and speculate about the intracellular consequences of the reversible Atox1-mediated copper transfer.  (+info)

Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. (4/74)

Impaired uptake of cisplatin (DDP) consistently accompanies the acquisition of resistance to the platinum drugs. The pathways by which DDP enters or exits from cells remain poorly defined. Using three pairs of human ovarian carcinoma cell lines, each consisting of a sensitive parental line and a stably DDP-resistant subline derived by in vitro selection, resistance to DDP was found to be accompanied by cross-resistance to Cu. Accumulation of DDP in the resistant sublines ranged from 38 to 67% of that in the parental line at 1 h, and DNA adduct formation varied from 10 to 38% of that in the sensitive cells. The DDP-resistant cells had 22-56% lower basal levels of copper, and the copper levels were only 27-46% of those observed in the sensitive parental lines after a 24-h exposure to medium supplemented with copper. The initial influx rate for DDP in the three resistant cell lines ranged from 23 to 55% of that in the sensitive cells of each pair; the initial influx rate for copper in the resistant cells varied from 56 to 75% of control. Studies performed using one pair of cell lines demonstrated that for both copper and DDP the initial efflux rate was lower, whereas the terminal efflux rate was higher in the resistant cells. On Western blot analysis all three resistant lines exhibited increased expression of one or the other of the two copper export pumps (ATP7A or ATP7B) with no change in the HAH1 chaperone. We conclude that the acquisition of DDP resistance in ovarian carcinoma is accompanied by alterations in the cellular pharmacology of DDP that are paralleled by similar changes in the uptake and efflux of copper. These results are consistent with the concept that DDP enters and exits from the cell via transporters that normally mediate copper homeostasis.  (+info)

Genomic organization of ATOX1, a human copper chaperone. (5/74)

BACKGROUND: Copper is an essential trace element that plays a critical role in the survival of all living organisms. Menkes disease and occipital horn syndrome (OHS) are allelic disorders of copper transport caused by defects in a X-linked gene (ATP7A) that encodes a P-type ATPase that transports copper across cellular membranes, including the trans-Golgi network. Genetic studies in yeast recently revealed a new family of cytoplasmic proteins called copper chaperones which bind copper ions and deliver them to specific cellular pathways. Biochemical studies of the human homolog of one copper chaperone, ATOX1, indicate direct interaction with the Menkes/OHS protein. Although no disease-associated mutations have been reported in ATOX1, mice with disruption of the ATOX1 locus demonstrate perinatal mortality similar to that observed in the brindled mice (Mobr), a mouse model of Menkes disease. The cDNA sequence for ATOX1 is known, and the genomic organization has not been reported. RESULTS: We determined the genomic structure of ATOX1. The gene contains 4 exons spanning a genomic distance of approximately 16 kb. The translation start codon is located in the 3' end of exon 1 and the termination codon in exon 3. We developed a PCR-based assay to amplify the coding regions and splice junctions from genomic DNA. We screened for ATOX1 mutations in two patients with classical Menkes disease phenotypes and one individual with occipital horn syndrome who had no alterations detected in ATP7A, as well as an adult female with chronic anemia, low serum copper and evidence of mild dopamine-beta-hydroxylase deficiency and no alterations in the ATOX1 coding or splice junction sequences were found. CONCLUSIONS: In this study, we characterized the genomic structure of the human copper chaperone ATOX1 to facilitate screening of this gene from genomic DNA in patients whose clinical or biochemical phenotypes suggest impaired copper transport.  (+info)

Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein. (6/74)

Excess copper is effluxed from mammalian cells by the Menkes or Wilson P-type ATPases (MNK and WND, respectively). MNK and WND have six metal binding sites (MBSs) containing a CXXC motif within their N-terminal cytoplasmic region. Evidence suggests that copper is delivered to the ATPases by Atox1, one of three cytoplasmic copper chaperones. Attempts to monitor a direct Atox1-MNK interaction and to determine kinetic parameters have not been successful. Here we investigated interactions of Atox1 with wild-type and mutated pairs of the MBSs of MNK using two different methods: yeast two-hybrid analysis and real-time surface plasmon resonance (SPR). A copper-dependent interaction of Atox1 with the MBSs of MNK was observed by both approaches. Cys to Ser mutations of conserved CXXC motifs affected the binding of Atox1 underlining the essentiality of Cys residues for the copper-induced interaction. Although the yeast two-hybrid assay failed to show an interaction of Atox1 with MBS5/6, SPR analysis clearly demonstrated a copper-dependent binding with all six MBSs highlighting the power and sensitivity of SPR as compared with other, more indirect methods like the yeast two-hybrid system. Binding constants for copper-dependent chaperone-MBS interactions were determined to be 10-5-10-6 m for all the MBSs representing relatively low affinity binding events. The interaction of Atox1 with pairs of the MBSs was non-cooperative. Therefore, a functional difference of the MBSs in the MNK N terminus cannot be attributed to cooperativity effects or varying affinities of the copper chaperone Atox1 with the MBSs.  (+info)

X-ray absorption spectroscopy of the copper chaperone HAH1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines. (7/74)

The human copper chaperone HAH1 transports copper to the Menkes and Wilson proteins, which are copper-translocating P-type ATPases located in the trans-Golgi apparatus and believed to provide copper for important enzymes such as ceruloplasmin, tyrosinase, and peptidylglycine monooxygenase. Although a substantial amount of structural data exist for HAH1 and its yeast and bacterial homologues, details of the copper coordination remain unclear and suggest the presence of two protein-derived cysteine ligands and a third exogenous thiol ligand. Here we report the preparation and reconstitution of HAH1 with Cu(I) using a protocol that minimizes the use of thiol reagents believed to be the source of the third ligand. We show by x-ray absorption spectroscopy that this reconstitution protocol generates an occupied Cu(I) binding site with linear biscysteinate coordination geometry, as evidenced by (i) an intense edge absorption centered at 8982.5 eV, with energy and intensity identical to the rigorously linear two-coordinate model complex bis-2,3,5,6-tetramethylbenzene thiolate Cu(I) and (ii) an EXAFS spectrum that could be fit to two Cu-S interactions at 2.16 A, a distance typical of digonal Cu(I) coordination. Binding of exogenous ligands (GSH, dithiothreitol, and tris-(2-carboxyethyl)-phosphine) to the Cu(I) was investigated. When GSH or dithiothreitol was added to the chaperone during the reconstitution procedure, the resulting Cu(I)- HAH1 remained two-coordinate, whereas the addition of the phosphine during reconstitution elicited a three-coordinate species. When the exogenous ligands were titrated into the Cu(I)-HAH1, all formed three-coordinate adducts but with differing affinities. Thus, GSH and dithiothreitol showed weaker binding, with estimated KD values in the range 10-25 mm, whereas tris-(2-carboxyethyl)-phosphine showed stronger affinity, with a KD value of <5 mm. The implications of these findings for mechanisms of copper transport are discussed.  (+info)

Binding of copper(I) by the Wilson disease protein and its copper chaperone. (8/74)

The Wilson disease protein (WND) is a transport ATPase involved in copper delivery to the secretory pathway. Mutations in WND and its homolog, the Menkes protein, lead to genetic disorders of copper metabolism. The WND and Menkes proteins are distinguished from other P-type ATPases by the presence of six soluble N-terminal metal-binding domains containing a conserved CXXC metal-binding motif. The exact roles of these domains are not well established, but possible functions include exchanging copper with the metallochaperone Atox1 and mediating copper-responsive cellular relocalization. Although all six domains can bind copper, genetic and biochemical studies indicate that the domains are not functionally equivalent. One way the domains could be tuned to perform different functions is by having different affinities for Cu(I). We have used isothermal titration calorimetry to measure the association constant (K(a)) and stoichiometry (n) values of Cu(I) binding to the WND metal-binding domains and to their metallochaperone Atox1. The association constants for both the chaperone and target domains are approximately 10(5) to 10(6) m(-1), suggesting that the handling of copper by Atox1 and copper transfer between Atox1 and WND are under kinetic rather than thermodynamic control. Although some differences in both n and K(a) values are observed for variant proteins containing less than the full complement of six metal-binding domains, the data for domains 1-6 were best fitted with a single site model. Thus, the individual functions of the six WND metal-binding domains are not conferred by different Cu(I) affinities but instead by fold and electrostatic surface properties.  (+info)