Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency. (33/628)

Dimethylglycine dehydrogenase (DMGDH) (E.C. number 1.5.99.2) is a mitochondrial matrix enzyme involved in the metabolism of choline, converting dimethylglycine to sarcosine. Sarcosine is then transformed to glycine by sarcosine dehydrogenase (E.C. number 1.5.99.1). Both enzymes use flavin adenine dinucleotide and folate in their reaction mechanisms. We have identified a 38-year-old man who has a lifelong condition of fishlike body odor and chronic muscle fatigue, accompanied by elevated levels of the muscle form of creatine kinase in serum. Biochemical analysis of the patient's serum and urine, using (1)H-nuclear magnetic resonance NMR spectroscopy, revealed that his levels of dimethylglycine were much higher than control values. The cDNA and the genomic DNA for human DMGDH (hDMGDH) were then cloned, and a homozygous A-->G substitution (326 A-->G) was identified in both the cDNA and genomic DNA of the patient. This mutation changes a His to an Arg (H109R). Expression analysis of the mutant cDNA indicates that this mutation inactivates the enzyme. We therefore confirm that the patient described here represents the first reported case of a new inborn error of metabolism, DMGDH deficiency.  (+info)

Diagnosis of dopa-responsive dystonia and other tetrahydrobiopterin disorders by the study of biopterin metabolism in fibroblasts. (34/628)

BACKGROUND: Dopa-responsive dystonia (DRD) and tetrahydrobiopterin (BH4) defects are inherited disorders characterized by monoamine neurotransmitter deficiency with decreased activity of one of the BH4-metabolizing enzymes. The aim of the study was to determine the utility of cultured skin fibroblasts for the diagnosis of these diseases. METHODS: Neopterin and biopterin production and GTP cyclohydrolase I (GTPCH) activity were measured in cytokine-stimulated fibroblasts; 6-pyruvoyltetrahydropterin synthase (PTPS), sepiapterin reductase (SR), and dihydropteridine reductase (DHPR) activities were measured in unstimulated fibroblasts. We examined 8 patients with DRD, 3 with autosomal recessive GTPCH deficiency, 7 with PTPS deficiency, 3 with DHPR deficiency, and 49 controls (35 fibroblast and 14 amniocyte samples). RESULTS: Fibroblasts from patients with DRD and autosomal recessive GTPCH deficiency showed reduced GTPCH activity (15.4% and 30.7% of normal activity, respectively) compared with controls (P < 0.001). Neopterin production was very low and biopterin production was reduced in both disorders. PTPS- and DHPR-deficient cells showed no enzyme activities; in PTPS deficiency the pattern of pterin production was typical (neopterin, 334-734 pmol/mg; controls, 18-98 pmol/mg; biopterin, 0 pmol/mg; controls, 154-303 pmol/mg). Reference values of all enzyme activities and pterin production were measured in fibroblasts and also in amniocytes for prenatal diagnosis. CONCLUSIONS: Cultured skin fibroblasts are a useful tool in the diagnosis of BH4 deficiencies. Intracellular neopterin and biopterin concentrations and GTPCH activity in cytokine-stimulated fibroblasts are particularly helpful in diagnosing patients with DRD.  (+info)

Familial hyperargininaemia. (35/628)

A third case of hyperargininaemia occurring in one family was studied from birth. In cord blood serum arginine concentration was only slightly raised, but arginase activity in red blood cell haemolysates was very low. In the urine on day 2 a typical cystinuria pattern was present. Arginine concentration in serum increased to 158 mumol/100 ml on the 41st day of life. Later determinations of the arginase activity in peripheral blood showed values below the sensitivity of the method. Blood ammonia was consistently high, and cystinuria was present. The enzymatic defect was further displayed by intravenous loading tests with arginine. Serum urea values were predominantly normal or near the lower limit of normal, suggesting the presence of other metabolic pathways of urea synthesis. In urine there was no excretion of guanidinosuccinic acid, while the excretion of other monosubstituted guanidine derivatives was increased, pointing to a connexion with hyperargininaemia. Owing to parental attitude, a low protein diet (1-5 g/kg) was introduced only late. The infant developed severe mental retardation, athetosis, and spasticity.  (+info)

Kinetics of lysosomal storage of indigestible matter. (36/628)

In lysosomal storage diseases and in accumulation of lipofusion in the lysosomes there is a gradual eroding of the lysosomal system due to overloading the lysosomes by molecules which cannot be digested or expelled. The kinetics of this accumulation is examined for tissue cultures in terms of the cell growth rate, lysosomal production rate, and of generation of the indigestible element.  (+info)

Trimethylaminuria: the fish malodor syndrome. (37/628)

The fish malodor syndrome (also known as the fish odor syndrome and trimethylaminuria) is a metabolic disorder characterized by the presence of abnormal amounts of the dietary-derived tertiary amine, trimethylamine, in the urine, sweat, expired air, and other bodily secretions. Trimethylamine itself has the powerful aroma of rotting fish, and this confers upon the sufferer a highly objectionable body odor, which can be destructive to the personal, social, and work life of the affected individual. In recent years, much progress has been made at all levels-clinical, epidemiological, biochemical, and genetic-in our understanding of this unfortunate condition. The present article summarizes this progress, draws attention to the different types of fish malodor syndrome, and highlights the current needs in the treatment of such patients.  (+info)

Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. (38/628)

This article describes the first patient with a deficiency of transaldolase (TALDO1 [E.C.2.2.1.2]). Clinically, the patient presented with liver cirrhosis and hepatosplenomegaly during early infancy. In urine and plasma, elevated concentrations of ribitol, D-arabitol, and erythritol were found. By incubating the patient's lymphoblasts and erythrocytes with ribose-5-phosphate and subsequently analyzing phosphate sugar metabolites, we discovered a deficiency of transaldolase. Sequence analysis of the transaldolase gene from this patient showed a homozygous deletion of 3 bp. This deletion results in absence of serine at position 171 of the transaldolase protein. This amino acid is invariable between species and is located in a conserved region, indicating its importance for enzyme activity. The detection of this new inborn error of pentose metabolism has implications for the diagnostic workup of liver problems of unknown etiology.  (+info)

The scope of mass spectrometry in clinical chemistry. (39/628)

Several aspects of mass spectrometry and gas chromatography-mass spectrometry are reviewed, including ionization methods, repetitive scanning, selected ion monitoring, and stable isotope measurement. I discuss the application of these and other mass spectrometry methods to the investigation of compound classes relevant to clinical chemistry, to the assessment of inborn errors of metabolism, and to clinical studies. The latter include consideration of volatiles in body fluids, respiration and blood gases, stable-isotope applications, clinical toxicology, and drugs.  (+info)

Dominant inheritance of sialuria, an inborn error of feedback inhibition. (40/628)

"French type" sialuria, a presumably dominant disorder that, until now, had been documented in only five patients, manifests with mildly coarse facies, slight motor delay, and urinary excretion of large quantities (>1 g/d) of free N-acetylneuraminic acid (NeuAc). The basic defect consists of the very rare occurrence of failed feedback inhibition of a rate-limiting enzyme, in this case uridinediphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase, by a downstream product, in this case cytidine monophosphate (CMP)-NeuAc. We report a new patient with sialuria who has a heterozygous G-->A substitution in nucleotide 848 of the epimerase gene, which results in an R266Q change. The proband's other allele, as expected, had no mutation. However, the heterozygous R266Q mutation was detected in the patient's mother, who has similarly increased urinary levels of free NeuAc, thereby confirming, for the first time, the dominant mode of inheritance of this inborn error. The biochemical diagnosis of the proband was verified by the greatly increased level of free NeuAc in his cultured fibroblasts, the NeuAc distribution, mainly (59%) in the cytoplasm, and by the complete failure of 100 microM CMP-NeuAc to inhibit UDP-GlcNAc 2-epimerase activity in the mutant cells. These findings call for expansion of the phenotype to include adults and for more-extensive assaying of free NeuAc in the urine of children with mild developmental delay. The prevalence of sialuria is probably grossly underestimated.  (+info)