The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1. (41/57141)

Polyspecific organic cation transporters in epithelia play an important role in the elimination of many endogenous bioactive amines and therapeutically important drugs. Recently, the first human organic cation transporter (hOCT1) was cloned from liver. The purpose of the current study was to determine the effect of molecular size and hydrophobicity on the transport of organic cations by hOCT1. We studied the interaction of a series of n-tetraalkylammonium (n-TAA) compounds (alkyl chain length, N, ranging from 1 to 6 carbons) with hOCT1 in a transiently transfected human cell line, HeLa. [14C]tetraethylammonium (TEA) uptake was measured under different experimental conditions. Both cis-inhibition and trans-stimulation studies were carried out. With the exception of tetramethylammonium, all of the n-TAAs significantly inhibited [14C]TEA uptake. A reversed correlation of IC50 values (range, 3.0-260 microM) with alkyl chain lengths or partition coefficients (LogP) was observed. trans-Stimulation studies revealed that TEA, tetrapropylammonium, tetrabutylammonium, as well as tributylmethylammonium trans-stimulated TEA uptake mediated by hOCT1. In contrast, tetramethylammonium and tetrapentylammonium did not trans-stimulate [14C]TEA uptake, and tetrahexylammonium demonstrated an apparent "trans-inhibition" effect. These data indicate that with increasing alkyl chain lengths (N >/= 2), n-TAA compounds are more poorly translocated by hOCT1 although their potency of inhibition increases. Similar findings were obtained with nonaliphatic hydrocarbons. These data suggest that a balance between hydrophobic and hydrophilic properties is necessary for binding and subsequent translocation by hOCT1.  (+info)

Characterization of the analgesic and anti-inflammatory activities of ketorolac and its enantiomers in the rat. (42/57141)

The marked analgesic efficacy of ketorolac in humans, relative to other nonsteroidal anti-inflammatory drugs (NSAIDs), has lead to speculation as to whether additional non-NSAID mechanism(s) contribute to its analgesic actions. To evaluate this possibility, we characterized (R,S)-ketorolac's pharmacological properties in vivo and in vitro using the nonselective cyclooxygenase (COX) inhibitors [indomethacin (INDO) and diclofenac sodium (DS)] as well as the selective COX-2 inhibitor, celecoxib, as references. The potency of racemic (R,S)-ketorolac was similar in tests of acetic acid-induced writhing, carrageenan-induced paw hyperalgesia, and carrageenan-induced edema formation in rats; ID50 values = 0.24, 0. 29, and 0.08 mg/kg, respectively. (R,S)-ketorolac's actions were stereospecific, with (S)-ketorolac possessing the biological activity of the racemate in the above tests. The analgesic potencies for (R,S)-, (S)-, and (R)-ketorolac, INDO, and DS were highly correlated with their anti-inflammatory potencies, suggesting a common mechanism. (R,S)-ketorolac was significantly more potent than INDO or DS in vivo. Neither difference in relative potency of COX inhibition for (R,S)-ketorolac over INDO and DS nor activity of (S)-ketorolac at a number of other enzymes, channels, or receptors could account for the differences in observed potency. The distribution coefficient for (R,S)-ketorolac was approximately 30-fold less than for DS or INDO, indicating that (R,S)-ketorolac is much less lipophilic than these NSAIDs. Therefore, the physicochemical and pharmacokinetics properties of (R,S)-ketorolac may optimize the concentrations of (S)-ketorolac at its biological target(s), resulting in greater efficacy and potency in vivo.  (+info)

Tyrosine kinase inhibitors and immunosuppressants perturb the myo-inositol but not the betaine cotransporter in isotonic and hypertonic MDCK cells. (43/57141)

BACKGROUND: The sodium/myo-inositol cotransporter (SMIT) and the betaine cotransporter (BGT1) are essential for the accumulation of myo-inositol and betaine, and hence cell survival in a hypertonic environment. The underlying molecular mechanism involves an increase in transcription of the SMIT and BGT1 genes through binding of a trans-acting factor to enhancer elements in the 5' flanking region of both genes, resulting in increased mRNA abundance and increased activity of the cotransporters. Current evidence regarding transcriptional and post-transcriptional regulation indicates that both cotransporters are regulated in parallel. METHODS: To investigate the signal transduction of hypertonic stress, we examined the effect of tyrosine kinase inhibitors and immunosuppressants on the hypertonicity-induced activity of the two cotransporters in Madin-Darby canine kidney (MDCK) cells. RESULTS: None of the agents studied affected BGT1 activity in isotonic or hypertonic conditions. Treatment of MDCK cells with genistein, a tyrosine kinase inhibitor, increased SMIT activity in hypertonic but not isotonic conditions. The stimulation of SMIT by genistein was accompanied by a parallel increase in mRNA abundance. In contrast, treating cells with tyrphostin A23, another tyrosine kinase inhibitor, or cyclosporine A, an immunosuppressant, inhibited SMIT activity in hypertonic cells. FK506, another immunosuppressant, increased SMIT activity, but only in isotonic conditions. CONCLUSIONS: These results provide the first evidence of divergent regulatory pathways modulating SMIT and BGT activity.  (+info)

PTCH2, a novel human patched gene, undergoing alternative splicing and up-regulated in basal cell carcinomas. (44/57141)

By a combination of cDNA library screening, rapid amplification of cDNA ends analysis, and BAC sequencing, a novel human patched-like gene (PTCH2) has been cloned and sequenced. The genomic organization is similar to PTCH1 with 22 exons and, by radiation hybrid mapping, PTCH2 has been localized to chromosome 1p33-34, a region often lost in a variety of tumors. Several alternatively spliced mRNA forms of PTCH2 were identified, including transcripts lacking segments thought to be involved in sonic hedgehog binding and mRNAs with differentially defined 3' terminal exons. In situ hybridization revealed high expression of PTCH2 transcripts in both familial and sporadic basal cell carcinomas in similarity to what has been observed for PTCH1, suggesting a negative regulation of PTCH2 by PTCH1. This finding tightly links PTCH2 with the sonic hedgehog/PTCH signaling pathway, implying that PTCH2 has related, but yet distinct, functions than PTCH1.  (+info)

Identification of the human melanoma-associated chondroitin sulfate proteoglycan antigen epitope recognized by the antitumor monoclonal antibody 763.74 from a peptide phage library. (45/57141)

To identify the epitope of the melanoma-associated chondroitin sulfate proteoglycan (MCSP) recognized by the monoclonal antibody (mAb) 763.74, we first expressed random DNA fragments obtained from the complete coding sequence of the MCSP core glycoproteins in phages and selected without success for binders to the murine mAb 763.74. We then used a library of random heptapeptides displayed at the surface of the filamentous M13 phage as fusion protein to the NH2-terminal portion of the minor coat protein III. After three rounds of selection on the bound mAb, several phages displaying related binding peptides were identified, yielding the consensus sequence Val-His-Leu-Asn-Tyr-Glu-His. Competitive ELISA experiments showed that this peptide can be specifically prevented from binding to mAb 763.74 by an anti-idiotypic MK2-23 mouse:human chimeric mAb and by A375 melanoma cells expressing the antigen MCSP. We screened the amino acid sequence of the MCSP molecule for a region of homology to the consensus sequence and found that the amino acid sequence Val-His-Ile-Asn-Ala-His spanning positions 289 and 294 has high homology. Synthetic linear peptides corresponding to the consensus sequence as well as to the MCSP-derived epitope inhibit the binding of mAb 763.74 to the phages displaying the consensus amino acid sequence. Finally, the biotinylated consensus peptide absorbed to streptavidin-microtiter plates can be used for the detection of mAb 763.74 in human serum. These results show clearly that the MCSP epitope defined by mAb 763.74 has been identified.  (+info)

Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. (46/57141)

Methotrexate (MTX) is one of the most active and widely used agents for the treatment of acute lymphoblastic leukemia (ALL). To elucidate the mechanism for higher accumulation of MTX polyglutamates (MTX-PG) in hyperdiploid ALL and lower accumulation in T-lineage ALL, expression of the reduced folate carrier (RFC) was assessed by reverse transcription-polymerase chain reaction in ALL blasts isolated from newly diagnosed patients. RFC expression exhibited a 60-fold range among 29 children, with significantly higher expression in hyperdiploid B-lineage ALL (median, 11.3) compared with nonhyperdiploid ALL (median, 2.1; P <.0006), but no significant difference between nonhyperdiploid B-lineage and T-lineage ALL. Furthermore, mRNA levels of RFC (mapped by FISH to chromosome 21) were significantly related to chromosome 21 copy number (P =.0013), with the highest expression in hyperdiploid ALL blasts with 4 copies of chromosome 21. To assess the functional significance of gene copy number, MTX-PG accumulation was compared in ALL blasts isolated from 121 patients treated with either low-dose MTX (LDMTX; n = 60) or high-dose MTX (HDMTX; n = 61). After LDMTX, MTX-PG accumulation was highest in hyperdiploid B-lineage ALL with 4 copies of chromosome 21 (P =.011), but MTX-PG accumulation was not significantly related to chromosome 21 copy number after HDMTX (P =.24). These data show higher RFC expression as a mechanism for greater MTX accumulation in hyperdiploid B-lineage ALL and indicate that lineage differences in MTX-PG accumulation are not due to lower RFC expression in T-lineage ALL.  (+info)

Characterization of beta cells developed in vitro from rat embryonic pancreatic epithelium. (47/57141)

The present study evaluates the development and functional properties of beta cells differentiated in vitro. The authors have previously demonstrated that when E12.5 rat pancreatic rudiments are cultured in vitro in the absence of mesenchyme, the majority of the epithelial cells differentiate into endocrine beta cells. Thus, depletion of the mesenchyme provokes the expansion of endocrine tissue at the expense of exocrine tissue. The potential use of this procedure for the production of beta cells led the authors to characterize the beta cells differentiated in this model and to compare their properties with those of the endocrine cells of the embryonic and adult pancreas. This study shows that the beta cells that differentiate in vitro in the absence of mesenchyme express the homeodomain protein Nkx6.1, a transcription factor that is characteristic of adult mature beta cells. Further, electron microscopy analysis shows that these beta cells are highly granulated, and the ultrastructural analysis of the granules shows that they are characteristic of mature beta cells. The maturity of these granules was confirmed by a double-immunofluorescence study that demonstrated that Rab3A and SNAP-25, two proteins associated with the secretory pathway of insulin, are strongly expressed. Finally, the maturity of the differentiated beta cells in this model was confirmed when the cells responded to stimulation with 16 mM glucose by a 5-fold increase in insulin release. The authors conclude that the beta cells differentiated in vitro from rat embryonic pancreatic rudiments devoid of mesenchyme are mature beta cells.  (+info)

Isolation and characterization of a human homologue of the latrophilin gene from a region of 1p31.1 implicated in breast cancer. (48/57141)

We have identified a region of chromosome 1p31.1 that shows high frequency loss of heterozygosity (LOH) in human breast cancer. This region forms part of a 7 Mb YAC/BAC contig. In order to identify candidate sequences, mutation of which might contribute to the development of disease, we have carried out mapping studies of ESTs localized to 1p31.1. This analysis, coupled with library screening and a modified 5' RACE-PCR strategy, resulted in the identification and characterization of a novel gene (LPHH1) which is located adjacent to the smallest region of overlapping loss (SRO) seen in tumours. The 4209 bp open reading frame of the 7 kb LPHH1 transcript encodes a peptide which shows approximately 65% identity to rat latrophilin, a G-coupled, seven span transmembrane protein, which binds alpha-latrotoxin. In the human sequence, whilst conservation of the transmembrane domain is high, the intra- and extracellular domains show two regions of variable structure, which are presumably generated by alternative splicing. Surprisingly, while expression of the rat gene is tightly restricted to neurological and perhaps some endocrine cells, the human sequence appears to be expressed very widely in all normal tissues tested. Northern and RT-PCR analysis of a panel of tumour cell lines showed that LPHH1 expression was variable, apparently elevated in some lines and absent or markedly reduced in others. Furthermore, characterization of the range of transcripts encoded in a breast tumour cell line, compared to normal breast, suggested that gene product variability was higher in the tumour.  (+info)