Ca2+-induced fusion of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles. (49/4162)

The fusogenic properties of sulfatide-containing 1,2-dioleoyl-3-sn -phosphatidylethanolamine (DOPE) small unilamellar vesicles (SUVs) in the presence of CaCl2 were studied by mixing membrane lipids based on an assay of fluorescence resonance energy transfer (FRET). Fusion of the vesicles was also confirmed by mixing aqueous contents with the Tb/dipicolinate (DPA) assay. The half-times of lipid mixing revealed that the fusion rate decreased with increasing molar concentration of sulfatide. This inhibitory effect was more obvious at sulfatide concentrations higher than 30 mol%, where hydration at the membrane surface reached its maximum and the fusion was no longer pH-sensitive in the range of pH 6.0 - 9.0. Similar inhibitory effect was also observed in Ca2+-induced fusion of DOPE/ganglioside GM1 vesicles but at a lower concentration of the glycosphingolipid (20 mol%). In contrast, increasing the concentration of phosphatidylserine (PS) in DOPE/PS SUVs resulted in an increase in the rate of Ca2+-induced lipid mixing and the pH sensitivity of this system was not affected. These results are consistent with an increasing steric hindrance to membrane fusion at higher molar concentration and larger headgroup size of the glycosphingolipids. Interestingly, the pH sensitivity of the sulfatide-containing liposomes was retained when they were allowed to fuse with synaptosomes in the absence of Ca2+ by a mechanism involving protein mediation.  (+info)

Lipid dynamics in the plasma membrane of fresh and cryopreserved human spermatozoa. (50/4162)

Preserving the integrity of the plasma membrane of spermatozoa is crucial for retention of their fertilizing capacity, especially after stressful procedures such as freezing and storage. In this investigation we have measured lipid diffusion in different regions of the plasma membrane of fresh and cryopreserved human spermatozoa using a sensitive, high resolution fluorescence photobleaching technique (FRAP) with 5-(N-octadecanyl)aminofluorescein as reporter probe. Results show that diffusion was significantly faster on the plasma membrane overlying the acrosome and decreased progressively in the postacrosome, midpiece and principal piece. The midpiece plasma contains a higher proportion of immobile lipids than other regions. In cryopreserved spermatozoa, lipid diffusion in the plasma membrane was significantly reduced on the acrosome, postacrosome and midpiece relative to fresh spermatozoa. Diffusion, however, could be restored to normal levels by washing spermatozoa in a medium containing 0.4% polyvinylpyrrolidine but not in medium alone or in medium containing 0.4% albumin. These results suggest that (i) lipid dynamics in the plasma membrane of human spermatozoa varies significantly between surface regions; (ii) in-plane diffusion is adversely affected by cryopreservation; and (iii) washing frozen spermatozoa in 0.4% polyvinylpyrrolidine restores membrane lipid fluidity to normal levels. The latter finding has important implications for improving the fertility of human spermatozoa following cryopreservation.  (+info)

Molecular recognition of concanavalin A on mannoside diacetylene lipid monolayer at the air-water interface. (51/4162)

The interaction of p-10,12-pentacosadiyne-1-n-phenylamide alpha-D-mannopyranoside (MPDA) with protein concanavalin A (Con A) was studied at the air/water interface. The expansion of molecular area of PDA (10,12-pentacosadiynoic acid)/MPDA mixed monolayer after injection of Con A in subphase shows strong interaction between Con A and the monolayer. The maximum expansion of molecular area decreases as the molar ratio of MPDA increases due to the steric hindrance effect. By using enzyme mannosidase to cut-off the mannoside headgroup of MPDA, expansion of molecular area was greatly reduced, indicating that the binding of Con A is specific to the mannoside headgroup. The kinetics of the binding fits to the first order bimolecular reaction model. Fluorescence quenching of fluorescein isothiocyanate labeled Con A after injection into the subphase gives a direct proof of the molecular recognition.  (+info)

Polar lipids of four Listeria species containing L-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. (52/4162)

The membrane lipids of Listeria innocua, Listeria monocytogenes, Listeria seeligeri and Listeria welshimeri were fractionated on DEAE-cellulose and purified by chromatography on silica gel and/or preparative TLC. The lipid structures were elucidated by chemical and chromatographic means. The polar lipid composition of the four listeria species was similar. Phospholipids predominated. They consisted of phosphatidylglycerol, L-lysylphosphatidylglycerol, cardiolipin [bis(phosphatidyl)glycerol] and L-lysylcardiolipin. A phospholipid more polar than cardiolipin, possibly two L-lysyl derivatives of it, sn-glycero-1-phosphoglycolipid, its D-alanyl derivative, and polyprenol phosphate were also detected. Towards the end of exponential growth, the relative amounts of cardiolipin and L-lysylcardiolipin increased, approaching 47-78% lipid phosphorus with a ratio of L-lysylcardiolipin to cardiolipin of 0.25-1.6. As shown by fast atom bombardment-mass spectrometry, cardiolipin and L-lysylcardiolipin consisted of five molecular species due to various fatty acid combinations. L-lysylcardiolipin has so far not been found in nature. It belongs to the recently discovered class of substituted cardiolipins. Its occurrence in the four listeria species tested shows that it is a characteristic lipid component of the L. monocytogenes line of descent. Further studies on the lipid pattern of members of the other descent line are required to decide whether lysylcardiolipin can serve as a genus-specific chemotaxonomic marker for listeriae.  (+info)

Membrane phospholipid composition affects function of potassium channels from rabbit colon epithelium. (53/4162)

We tested the effects of membrane phospholipids on the function of high-conductance, Ca(2+)-activated K(+) channels from the basolateral cell membrane of rabbit distal colon epithelium by reconstituting these channels into planar bilayers consisting of different 1:1 mixtures of phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI). At low ambient K(+) concentrations single-channel conductance is higher in PE/PS and PE/PI bilayers than in PE/PC bilayers. At high K(+) concentrations this difference in channel conductance is abolished. Introducing the negatively charged SDS into PE/PC bilayers increases channel conductance, whereas the positively charged dodecyltrimethylammonium has the opposite effect. All these findings are consistent with modulation of channel current by the charge of the lipid membrane surrounding the channel. But the K(+) that permeates the channel senses only a small fraction of the full membrane surface potential of the charged phospholipid bilayers, equivalent to separation of the conduction pathway from the charged phospholipid head groups by 20 A. This distance appears to insulate the channel entrance from the bilayer surface potential, suggesting large dimensions of the channel-forming protein. In addition, in PE/PC and PE/PI bilayers, but not in PE/PS bilayers, the open-state probability of the channel decreases with time ("channel rundown"), indicating that phospholipid properties other than surface charge are required to maintain channel fluctuations.  (+info)

Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. (54/4162)

Specific interactions of membrane proteins with the membrane interfacial region potentially define protein position with respect to the lipid environment. We investigated the proposed roles of tryptophan and lysine side chains as "anchoring" residues of transmembrane proteins. Model systems were employed, consisting of phosphatidylcholine lipids and hydrophobic alpha-helical peptides, flanked either by tryptophans or lysines. Peptides were incorporated in bilayers of different thickness, and effects on lipid structure were analyzed. Induction of nonbilayer phases and also increases in bilayer thickness were observed that could be explained by a tendency of Trp as well as Lys residues to maintain interactions with the interfacial region. However, effects of the two peptides were remarkably different, indicating affinities of Trp and Lys for different sites at the interface. Our data support a model in which the Trp side chain has a specific affinity for a well defined site near the lipid carbonyl region, while the lysine side chain prefers to be located closer to the aqueous phase, near the lipid phosphate group. The information obtained in this study may further our understanding of the architecture of transmembrane proteins and may prove useful for refining prediction methods for transmembrane segments.  (+info)

Plasma membrane phospholipid integrity and orientation during hypoxic and toxic proximal tubular attack. (55/4162)

BACKGROUND: Acute cell injury can activate intracellular phospholipase A2 (PLA2) and can inhibit plasma membrane aminophospholipid translocase(s). The latter maintains inner/outer plasma membrane phospholipid (PL) asymmetry. The mechanistic importance of PLA2-mediated PL breakdown and possible PL redistribution ("flip flop") to lethal tubule injury has not been well defined. This study was performed to help clarify these issues. METHODS: Proximal tubule segments (PTS) from normal CD-1 mice were subjected to either 30 minutes of hypoxia, Ca2+ ionophore (50 microM A23187), or oxidant attack (50 microM Fe). Lethal cell injury [the percentage of lactate dehydrogenase (LDH) release], plasma membrane PL expression [two-dimensional thin layer chromatography (TLC)], and free fatty acid (FFA) levels were then assessed. "Flip flop" was gauged by preferential decrements in phosphatidylserine (PS) versus phosphatidylcholine (PC; PS/PC ratios) in response to extracellular (Naja) PLA2 exposure. RESULTS: Hypoxia induced approximately 60% LDH release, but no PL losses were observed. FFA increments suggested, at most 3% or less PL hydrolysis. Naja PLA2 reduced PLs in hypoxic tubules, but paradoxically, mild cytoprotection resulted. In contrast to hypoxia, Ca2+ ionophore and Fe each induced significant PL losses (6 to 15%) despite minimal FFA accumulation or cell death (26 to 27% LDH release). Arachidonic acid markedly inhibited PLA2 activity, potentially explaining an inverse correlation (r = -0.91) between tubule FFA accumulation and PL decrements. No evidence for plasma membrane "flip flop" was observed. In vivo ischemia reperfusion and oxidant injury (myohemoglobinuria) induced 0 and 24% cortical PL depletion, respectively, validating these in vitro data. CONCLUSIONS: (a) Plasma membrane PLs are well preserved during acute hypoxic/ischemic injury, possibly because FFA accumulation (caused by mitochondrial inhibition) creates a negative feedback loop, inhibiting intracellular PLA2. (b) Exogenous PLA2 induces PL losses during hypoxia, but decreased cell injury can result. Together these findings suggest that PL loss may not be essential to hypoxic cell death. (c) Oxidant/Ca2+ overload injury induces early PL losses, perhaps facilitated by ongoing mitochondrial FFA metabolism, and (d) membrane "flip flop" does not appear to be an immediate mediator of acute necrotic tubular cell death.  (+info)

The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. (56/4162)

When light energy absorbed by plants becomes excessive relative to the capacity of photosynthesis, the xanthophyll violaxanthin is reversibly deepoxidized to zeaxanthin (violaxanthin cycle). The protective function of this phenomenon was investigated in a mutant of Arabidopsis thaliana, npq1, that has no functional violaxanthin deepoxidase. Two major consequences of the npq1 mutation are the absence of zeaxanthin formation in strong light and the partial inhibition of the quenching of singlet excited chlorophylls in the photosystem II light-harvesting complexes. Prolonged exposure of whole plants to bright light resulted in a limited photoinhibition of photosystem II in both npq1 and wild-type leaves, although CO(2) fixation and the linear electron transport in npq1 plants were reduced substantially. Lipid peroxidation was more pronounced in npq1 compared with the wild type, as measured by chlorophyll thermoluminescence, ethane production, and the total hydroperoxy fatty acids content. Lipid peroxidation was amplified markedly under chilling stress, and photooxidative damage ultimately resulted in leaf bleaching and tissue necrosis in npq1. The npq4 mutant, which possesses a normal violaxanthin cycle but has a limited capacity of quenching singlet excited chlorophylls, was rather tolerant to lipid peroxidation. The double mutant, npq4 npq1, which differs from npq4 only by the absence of the violaxanthin cycle, exhibited an increased susceptibility to photooxidative damage, similar to that of npq1. Our results demonstrate that the violaxanthin cycle specifically protects thylakoid membrane lipids against photooxidation. Part of this protection involves a mechanism other than quenching of singlet excited chlorophylls.  (+info)