MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. (49/25276)

In Saccharomyces cerevisiae, two major signal transduction pathways, the Kss1 MAPK pathway and the cAMP-regulated pathway, are critical for the differentiation of round yeast form cells to multicellular, invasive pseudohyphae. Here we report that these parallel pathways converge on the promoter of a gene, FLO11, which encodes a cell surface protein required for pseudohyphal formation. The FLO11 promoter is unusually large, containing at least four upstream activation sequences (UASs) and nine repression elements which together span at least 2.8 kb. Several lines of evidence indicate that the MAPK and cAMP signals are received by distinct transcription factors and promoter elements. First, regulation via the MAPK pathway requires the transcription factors Ste12p/Tec1p, whereas cAMP-mediated activation requires a distinct factor, Flo8p. Secondly, mutations in either pathway block FLO11 transcription. Overexpression of STE12 can suppress the loss of FLO8, and overexpression of FLO8 can suppress the loss of STE12. Finally, multiple distinct promoter regions of the FLO11 promoter are required for its activation by either Flo8p or Ste12p/ Tec1p. Thus, like the promoters of the key developmental genes, HO and IME1, the FLO11 promoter is large and complex, endowing it with the ability to integrate multiple inputs.  (+info)

Competition of Abeta amyloid peptide and apolipoprotein E for receptor-mediated endocytosis. (50/25276)

The genetic polymorphism of apolipoprotein E (apoE) is associated with the age of onset and relative risk of Alzheimer's disease (AD). In contrast to apoE3, the wild type allele, apoE4 confers an increased risk of late-onset AD. We demonstrate that the beta-amyloid peptide isoforms Abeta (1-28), Abeta (1-40), and Abeta (1-43) compete for the cellular metabolism of apoE3 and apoE4 containing beta-very low density lipoproteins. An antibody raised against Abeta (1-28) cross-reacted with recombinant apoE. Epitope mapping revealed positive amino acid clusters as common epitopes of Abeta (13 through 17; HHQKL) and apoE (residues 144 through 148; LRKRL), both regions known to be heparin binding domains. Abeta in which amino acids 13 through 17 (HHQKL) were replaced by glycine (GGQGL) failed to compete with the cellular uptake of apoE enriched betaVLDL. These observations indicate that Abeta and apoE are taken up into cells by a common pathway involving heparan sulfate proteoglycans.  (+info)

CD9 is expressed in extravillous trophoblasts in association with integrin alpha3 and integrin alpha5. (51/25276)

The CD9 molecule is a 24-27 kDa cell surface glycoprotein, which may be related to Schwann cell migration and adhesion. In this study, we examined the expression of CD9 in human extravillous trophoblasts, which invade into the endometrium during implantation and placentation. CD9 was detected immunohistochemically on the extravillous trophoblasts in the cell columns of first trimester placentae, but not on villous trophoblasts. In the second and third trimester, CD9 was highly expressed on the extravillous trophoblasts in the basal plate of placentae, and in the chorion laeve in the fetal membrane of term placentae. The molecular mass of CD9 in the chorion laeve was shown to be 27 kDa by Western blotting. The mRNA of CD9 was also detected in the chorion laeve by reverse transcription-polymerase chain reaction (RT-PCR). Proteins were purified from chorion laeve by affinity chromatography with anti-integrin alpha3 and alpha5 monoclonal antibodies and Western blotting, revealed that CD9 was associated with both integrins. These findings indicate that CD9 is a differentiation-related molecule present in the extravillous trophoblasts. Since it is associated with integrin alpha5 which has been proposed to regulate trophoblast invasion, CD9 may be implicated in trophoblast invasion at the feto-maternal interface.  (+info)

CD9 is involved in invasion of human trophoblast-like choriocarcinoma cell line, BeWo cells. (52/25276)

The CD9 molecule is expressed on human extravillous trophoblasts, which invade the endometrium during implantation and placentation. To elucidate the role of CD9 in trophoblastic function, we investigated the expression of CD9 protein and mRNA in BeWo cells, a human trophoblast-like choriocarcinoma cell line, using immunohistochemistry, Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). When BeWo cells were cultured with anti-CD9 monoclonal antibodies (mAb), their invasion through the extracellular matrices was significantly enhanced in a dose-dependent manner. Cell proliferation and human chorionic gonadotrophin production were unaffected. On the other hand, culture in the presence of mAb against integrins alpha3, alpha5 and beta1, which partially block the interaction with the extracellular matrices, inhibited BeWo cell invasion. Anti-CD9 monoclonal antibody had a stimulatory effect on BeWo cell invasion in the presence of anti-integrin alpha3 antibody. In contrast, it had no effect in the presence of mAb against integrins alpha5 and beta1, which were also highly expressed on BeWo cells. These findings suggest that CD9 has a function connected with the invasive properties of BeWo cells, which is partially mediated by integrin alpha5beta1. This may relate to the involvement of CD9 in trophoblastic invasion.  (+info)

Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. (53/25276)

The pathogenesis of candidiasis involves invasion of host tissues by filamentous forms of the opportunistic yeast Candida albicans. Morphology-specific gene products may confer proinvasive properties. A hypha-specific surface protein, Hwp1, with similarities to mammalian small proline-rich proteins was shown to serve as a substrate for mammalian transglutaminases. Candida albicans strains lacking Hwp1 were unable to form stable attachments to human buccal epithelial cells and had a reduced capacity to cause systemic candidiasis in mice. This represents a paradigm for microbial adhesion that implicates essential host enzymes.  (+info)

Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons. (54/25276)

Dendritic retraction occurs in many regions of the developing brain and also after neural injury. However, the molecules that regulate this important regressive process remain largely unknown. Our data indicate that leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) cause sympathetic neurons to retract their dendrites in vitro, ultimately leading to an approximately 80% reduction in the size of the arbor. The dendritic retraction induced by LIF exhibited substantial specificity because it was not accompanied by changes in cell number, in the rate of axonal growth, or in the expression of axonal cytoskeletal elements. An antibody to gp130 blocked the effects of LIF and CNTF, and both cytokines induced phosphorylation and nuclear translocation of stat3. Moreover, addition of soluble interleukin-6 (IL-6) receptor to the medium endowed IL-6 with the ability to cause dendritic regression. These data indicate that ligands activating the gp130 pathway have the ability to profoundly alter neuronal cell shape and polarity by selectively causing the retraction of dendrites.  (+info)

Disulfide bond structure and N-glycosylation sites of the extracellular domain of the human interleukin-6 receptor. (55/25276)

The high affinity interleukin-6 (IL-6) receptor is a hexameric complex consisting of two molecules each of IL-6, IL-6 receptor (IL-6R), and the high affinity converter and signaling molecule, gp130. The extracellular "soluble" part of the IL-6R (sIL-6R) consists of three domains: an amino-terminal Ig-like domain and two fibronectin-type III (FN III) domains. The two FN III domains comprise the cytokine-binding domain defined by a set of 4 conserved cysteine residues and a WSXWS sequence motif. Here, we have determined the disulfide structure of the human sIL-6R by peptide mapping in the absence and presence of reducing agent. Mass spectrometric analysis of these peptides revealed four disulfide bonds and two free cysteines. The disulfides Cys102-Cys113 and Cys146-Cys157 are consistent with known cytokine-binding domain motifs, and Cys28-Cys77 with known Ig superfamily domains. An unusual cysteine connectivity between Cys6-Cys174, which links the Ig-like and NH2-terminal FN III domains causing them to fold back onto each other, has not previously been observed among cytokine receptors. The two free cysteines (Cys192 and Cys258) were detected as cysteinyl-cysteines, although a small proportion of Cys258 was reactive with the alkylating agent 4-vinylpyridine. Of the four potential N-glycosylation sites, carbohydrate moieties were identified on Asn36, Asn74, and Asn202, but not on Asn226.  (+info)

Trimming and readdition of glucose to N-linked oligosaccharides determines calnexin association of a substrate glycoprotein in living cells. (56/25276)

To analyze the role of glucose trimming and reglucosylation in the binding of substrate proteins to calnexin in the endoplasmic reticulum (ER) of living cells, we made use of the thermosensitive vesicular stomatitis virus tsO45 glycoprotein (G protein). At nonpermissive temperature the G protein failed to fold completely and remained bound to calnexin. When the cells were shifted to permissive temperature, complete folding occurred accompanied by glucosidase-mediated elimination of calnexin-G protein complexes. If release from calnexin was blocked during the temperature shift by inhibiting the glucosidases, folding occurred, albeit at a reduced rate. In contrast, when unfolded by a shift from permissive to nonpermissive temperature, the G protein was reglucosylated rapidly and became capable of rebinding to calnexin. The rate at which calnexin binding occurred showed a 20-min delay that was explained by accumulation of the G protein in calnexin-free exit sites of the ER. These contained the glucosyltransferase responsible for reglucosylation of misfolded glycoproteins but had little or no calnexin. After unfolding and reglucosylation, the G proteins moved slowly from these structures back to the ER where they reassociated with the chaperone. Taken together, these results in live cells fully supported the lectin-only model of calnexin function. The ER exit sites emerged as a potentially important location for components of the quality control system.  (+info)