Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. (57/1585)

The involvement of the phosphatidylinositol 3-kinase pathway in the regulation of melanogenesis was examined using human G361 melanoma cells. In the cells treated with wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, the melanin content increased concomitant with the elevated protein level of tyrosinase, a key enzyme in melanogenesis. Northern blot analysis revealed that the mRNA level of tyrosinase increased transiently on treatment of the cells with the phosphatidylinositol 3-kinase inhibitor. When the cells were infected with the adenovirus vector encoding the mutant adapter subunit of phosphatidylinositol 3-kinase, which acts as a dominant negative of phosphatidylinositol 3-kinase, both the melanin content and the expression of tyrosinase increased. In cells infected with the adenovirus vector encoding the constitutively active mutant of the lipid kinase, a decrease in melanin content as well as reduced expression of tyrosinase was observed. In cells expressing the constitutively active mutant of the serine-threonine protein kinase Akt, one of the downstream targets of phosphatidylinositol 3-kinase, the melanin content decreased as in the cells overproducing the constitutively active mutant of phosphatidylinositol 3-kinase. These results indicate that phosphatidylinositol 3-kinase regulates melanogenesis by modulating the expression of tyrosinase, and that activation of Akt is sufficient for suppression of melanin production in G361 melanoma cells.  (+info)

Differential effects of endoparasitism on the expression of carotenoid- and melanin-based ornamental coloration. (58/1585)

The striking diversity of sexual dimorphisms in nature begs the question: Why are there so many signal types? One possibility is that ornamental traits convey different sets of information about the quality of the sender to the receiver. The colourful, pigmented feathers of male birds seem to meet the predictions of this hypothesis. Evidence suggests that carotenoid pigmentation reflects the nutritional condition of males during moult, whereas in many instances melanin pigmentation is a reliable indicator of social status. However, as of yet there have been no experimental tests to determine how these two ornament types respond to the same form of environmental stress. In this study, we tested the effect of endoparasitic infection by intestinal coccidians (Isospora sp.) on the expression of both carotenoid- and melanin-based ornamental coloration in captive male American goldfinches (Carduelis tristis). We found that the carotenoid-based plumage and bill coloration of parasitized males was less saturated than that developed by unparasitized males, but that the brightness and size of melanin-based black caps did not differ between the groups. These findings provide the most robust empirical support to date for the notion that carotenoid and melanin ornaments reveal different information to conspecifics.  (+info)

Pathogenic roles for fungal melanins. (59/1585)

Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H(2)O(2). Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning.  (+info)

Dopamine-melanin protects against tyrosine nitration, tryptophan oxidation and Ca(2+)-ATPase inactivation induced by peroxynitrite. (60/1585)

The effects of dopamine-melanin (DA-melanin), a synthetic model of neuromelanin, on peroxynitrite-mediated 3-nitrotyrosine formation, oxidation of tryptophan in bovine serum albumin and inactivation of erythrocyte membrane Ca(2+)-ATPase activity were investigated in the absence and in the presence of bicarbonate. DA-melanin inhibited nitration of free tyrosine, loss of tryptophan residues and Ca(2+)-ATPase inactivation by peroxynitrite in a dose dependent manner. In the presence of bicarbonate, this inhibitory effect was lower for nitration and insignificant for oxidative protein modifications. These results suggest that neuromelanin can protect against nitrating and oxidizing action of peroxynitrite but is a worse protector against the peroxynitrite-CO(2) adduct. As peroxynitrite may be a mediator of neurotoxic processes, the obtained results suggest that neuromelanin may be important as a physiological protector against peroxynitrite.  (+info)

Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. (61/1585)

Melanin, the pigment in hair, skin, eyes, and feathers, protects external tissue from damage by UV light. In contrast, neuromelanin (NM) is found in deep brain regions, specifically in loci that degenerate in Parkinson's disease. Although this distribution suggests a role for NM in Parkinson's disease neurodegeneration, the biosynthesis and function of NM have eluded characterization because of lack of an experimental system. We induced NM in rat substantia nigra and PC12 cell cultures by exposure to l-dihydroxyphenylalanine, which is rapidly converted to dopamine (DA) in the cytosol. This pigment was identical to human NM as assessed by paramagnetic resonance and was localized in double membrane autophagic vacuoles identical to NM granules of human substantia nigra. NM synthesis was abolished by adenoviral-mediated overexpression of the synaptic vesicle catecholamine transporter VMAT2, which decreases cytosolic DA by increasing vesicular accumulation of neurotransmitter. The NM is in a stable complex with ferric iron, and NM synthesis was inhibited by the iron chelator desferrioxamine, indicating that cytosolic DA and dihydroxyphenylalanine are oxidized by iron-mediated catalysis to membrane-impermeant quinones and semiquinones. NM synthesis thus results from excess cytosolic catecholamines not accumulated into synaptic vesicles. The permanent accumulation of excess catechols, quinones, and catechol adducts into a membrane-impermeant substance trapped in organelles may provide an antioxidant mechanism for catecholamine neurons. However, NM in organelles associated with secretory pathways may interfere with signaling, as it delays stimulated neurite outgrowth in PC12 cells.  (+info)

Reduced number of hypocretin neurons in human narcolepsy. (62/1585)

Murine and canine narcolepsy can be caused by mutations of the hypocretin (Hcrt) (orexin) precursor or Hcrt receptor genes. In contrast to these animal models, most human narcolepsy is not familial, is discordant in identical twins, and has not been linked to mutations of the Hcrt system. Thus, the cause of human narcolepsy remains unknown. Here we show that human narcoleptics have an 85%-95% reduction in the number of Hcrt neurons. Melanin-concentrating hormone (MCH) neurons, which are intermixed with Hcrt cells in the normal brain, are not reduced in number, indicating that cell loss is relatively specific for Hcrt neurons. The presence of gliosis in the hypocretin cell region is consistent with a degenerative process being the cause of the Hcrt cell loss in narcolepsy.  (+info)

Hypothalamic melanin-concentrating hormone and estrogen-induced weight loss. (63/1585)

Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide produced by neurons of the lateral hypothalamic area (LHA). Because genetic MCH deficiency induces hypophagia and loss of body fat, we hypothesized that MCH neurons may represent a specific LHA pathway that, when inhibited, contributes to the pathogenesis of certain anorexia syndromes. To test this hypothesis, we measured behavioral, hormonal, and hypothalamic neuropeptide responses in two models of hyperestrogenemia in male rats, a highly reproducible anorexia paradigm. Whereas estrogen-induced weight loss engaged multiple systems that normally favor recovery of lost weight, the expected increase of MCH mRNA expression induced by energy restriction was selectively and completely abolished. These findings identify MCH neurons as specific targets of estrogen action and suggest that inhibition of these neurons may contribute to the hypophagic effect of estrogen.  (+info)

Structural and functional analysis of the Xestia c-nigrum granulovirus matrix metalloproteinase. (64/1585)

Sequence analysis of the Xestia c-nigrum granulovirus (XcGV) genome identified an open reading frame encoding a 469-amino-acid (54-kDa) protein with over 30% amino acid sequence identity to a region of about 150 amino acids that includes the catalytic domains of human stromelysin 1 (Str1)/matrix metalloproteinase 3 (MMP-3) (EC 3.4.24.17) and sea urchin hatching enzyme (HE). Stromelysin homologs have not been reported from baculoviruses or other viruses. Unlike human Str1 and sea urchin HE, the putative XcGV-MMP does not have a signal peptide and lacks the peptide motif involved in the cysteine switch that maintains other MMPs in an inactive form. The putative XcGV-MMP, however, possesses a conserved zinc-binding motif in its putative catalytic domain. The XcGV-MMP homolog was cloned, and a recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) that expresses XcGV-MMP under the polyhedrin promoter was constructed. A distinct pattern of melanization was observed in B. mori larvae infected with MMP-expressing BmNPV. Fat body extracts from larvae overexpressing the 54-kDa recombinant MMP digested dye-impregnated collagen (Azocoll). The enzymatic activity was inhibited by two metalloproteinase inhibitors, EDTA and 1,10-phenanthroline. These results suggest that the XcGV MMP-3 gene homolog encodes a functional metalloproteinase.  (+info)