Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death. (1/478)

Using in situ patch-clamp techniques in rat telencephalic slices, we have followed resting potential (RP) properties and the functional expression of NMDA receptors in neocortical Cajal-Retzius (CR) cells from embryonic day 18 to postnatal day 13, the time around which these cells normally disappear. We find that throughout their lives CR cells have a relatively depolarized RP (approximately -50 mV), which can be made more hyperpolarized (approximately -70 mV) by stimulation of the Na/K pump with intracellular ATP. The NMDA receptors of CR cells are subjected to intense postnatal upregulation, but their similar properties (EC50, Hill number, sensitivity to antagonists, conductance, and kinetics) throughout development suggest that their subunit composition remains relatively homogeneous. The low RP of CR cells is within a range that allows for the relief of NMDA channels from Mg2+ blockade. Our findings are consistent with the hypothesis that CR cells may degenerate and die subsequent to uncontrolled overload of intracellular Ca2+ via NMDA receptor activation by ambient glutamate. In support of this hypothesis we have obtained evidence showing the protection of CR cells via in vivo blockade of NMDA receptors with dizocilpine.  (+info)

Overexpression of the multidrug resistance-associated protein (MRP1) in human heavy metal-selected tumor cells. (2/478)

Cellular and molecular mechanisms involved in the resistance to cytotoxic heavy metals remain largely to be characterized in mammalian cells. To this end, we have analyzed a metal-resistant variant of the human lung cancer GLC4 cell line that we have selected by a step-wise procedure in potassium antimony tartrate. Antimony-selected cells, termed GLC4/Sb30 cells, poorly accumulated antimony through an enhanced cellular efflux of metal, thus suggesting up-regulation of a membrane export system in these cells. Indeed, GLC4/Sb30 cells were found to display a functional overexpression of the multidrug resistance-associated protein MRP1, a drug export pump, as demonstrated by Western blotting, reverse transcriptase-polymerase chain reaction and calcein accumulation assays. Moreover, MK571, a potent inhibitor of MRP1 activity, was found to markedly down-modulate resistance of GLC4/Sb30 cells to antimony and to decrease cellular export of the metal. Taken together, our data support the conclusion that overexpression of functional MRP1 likely represents one major mechanism by which human cells can escape the cytotoxic effects of heavy metals.  (+info)

Value of Western blotting in the clinical follow-up of canine leishmaniasis. (3/478)

Specific serum antibody levels in Leishmania infantum-infected dogs treated with a combination of glucantime and allopurinol were estimated by indirect immunofluorescence and Western blotting. The sensitivity of Western blot was greater than that obtained with immunofluorescence titration. In general, both diagnostic methods concurred with the post-treatment clinical status of the animals. Clinical improvement of successfully treated dogs was related to lower immunofluorescence titers and simpler and/or less reactive immunodetection patterns in Western blotting. The recognition, by infected dogs, of certain low molecular weight antigens, particularly one of approximately 26 kDa, was restricted to pretreatment samples and a single animal in relapse thus apparently constituting an active infection marker.  (+info)

Supraspinal neurotensin-induced antianalgesia in mice is mediated by spinal cholecystokinin. (4/478)

Intracerebral injection of neurotensin into specific brain loci in rats produces hyperalgesia due to the release of cholecystokinin (CCK) in the spinal cord. The present purpose was to show in another species that neurotensin can antagonize the antinociceptive action of morphine through the spinal CCK mechanism in mice. Neurotensin given intracerebroventricularly (i.c.v.) at doses higher than 100 ng produced antinociception in the tail flick test. However, at lower doses between 1 pg to 25 ng, neurotensin antagonized the antinociceptive action of morphine given intrathecally (i.t.), thus demonstrating the antianalgesic activity of neurotensin. The rightward shift in the morphine dose-response curve produced by i.c.v. neurotensin was eliminated by an i.t. pretreatment with CCK8 antibody (5 microl of antiserum solution diluted 1:1000). I.t. administration of lorglumide, a CCK(A)-receptor antagonist (10-1000 ng), and PD135,158, a CCK(B)-receptor antagonist (250-500 ng), also eliminated the antianalgesic action of neurotensin. Thus, the mechanism of the antianalgesic action of neurotensin given i.c.v. involved spinal CCK. This mode of action is similar to that for the antianalgesic action of supraspinal pentobarbital which also involves spinal CCK.  (+info)

Analysis of the behaviour of selected CCKB/gastrin receptor antagonists in radioligand binding assays performed in mouse and rat cerebral cortex. (5/478)

1. The previously described complex behaviour of the CCKB/gastrin receptor antagonist, L-365,260, in radioligand binding assays could be explained by a variable population of two binding sites. We have investigated whether other CCKB/gastrin receptor ligands (PD134,308, PD140,376, YM022 and JB93182) can distinguish between these sites. 2. In the mouse cortex assay, Hill slopes were not different from unity and the ligand pKI values did not differ when either [125I]-BH-CCK-8S or [3H]-PD140,376 was used as label as expected for a single site (G2). 3. In the rat cortex, where previous analysis of replicate (n=48) L-365,260 data indicated the presence of two CCKB/gastrin sites (G1 and G2), the competition data for PD134,308, PD140,376, YM022 and JB93182 could be explained by a homogeneous population of CCKB/gastrin sites because the Hill slope estimates were not significantly different from unity. However, the estimated affinity values for JB93182 and YM022 were significantly higher and that for PD134,308 was significantly lower than those obtained in the mouse cortex when the same radioligand was used. In view of our previous data obtained with L-365,260, the rat cortex data were also interpreted using a two-site model. In this analysis, SR27897 expressed approximately 9 fold, PD134,308 approximately 13 fold and PD140,376 approximately 11 fold selectivity for the G2 site. In contrast, JB93182 expressed approximately 23 fold and YM022 approximately 4 fold selectivity for the G1 site. If the two-site interpretation of the data is valid then, because of its reverse selectivity to L-365,260, JB93182 has been identified as a compound which if radiolabelled could provide a test of this receptor subdivision.  (+info)

Characterization of the binding of a novel radioligand to CCKB/gastrin receptors in membranes from rat cerebral cortex. (6/478)

1. We have investigated the binding of a novel radiolabelled CCKB/gastrin receptor ligand, [3H]-JB93182 (5[[[(1S)-[[(3,5-dicarboxyphenyl)amino]carbonyl]-2-phenylethyla mino]-carbonyl]-6-[[(1-adamantylmethyl) amino]carbonyl]-indole), to sites in rat cortex membranes. 2. The [3H]-JB93182 was 97% radiochemically pure as assessed by reverse-phase HPLC (RP-HPLC) and was not degraded by incubation (150 min) with rat cortex membranes. 3. Saturation analysis indicated that [3H]-JB93182 labelled a homogeneous population of receptors in rat cortex membranes (pKD=9.48+/-0.08, Bmax=3.61+/-0.65 pmol g(-1) tissue, nH=0.97+/-0.02, n=5). The pKD was not significantly different when estimated by association-dissociation analysis (pKD=9.73+/-0.11; n=10). 4. In competition studies, the low affinity of the CCKA receptor antagonists, L-364,718; SR27897 and 2-NAP, suggest that, under the assay conditions employed, [3H]-JB93182 (0.3 nM) does not label CCKA receptors in the rat cortex. 5. The affinity estimates obtained for reference CCKB/gastrin receptor antagonists were indistinguishable from one of the affinity values obtained when a two site model was used to interpret [125I]-BH-CCK8S competition curves obtained in the same tissue (Harper et al., 1999). 6. This study provides further evidence for the existence of two CCKB/gastrin sites in rat cortex. [3H]-JB93182 appears to label selectively sites previously designated as gastrin-G1 and therefore it may be a useful compound for the further discrimination and characterization of these putative receptor subtypes.  (+info)

Differential effects of intrathecally administered morphine and its interaction with cholecystokinin-B antagonist on thermal hyperalgesia following two models of experimental mononeuropathy in the rat. (7/478)

BACKGROUND: Cholecystokinin-B receptor activation has been reported to reduce morphine analgesia. Neuropathic pain is thought to be relatively refractory to opioids. One possible mechanisms for a reduced effect of morphine on neuropathic pain is the induction of cholecystokinin in the spinal cord by nerve injury. The authors evaluated the role of the spinal cholecystokinin-B receptor on morphine analgesia in two rat neuropathic pain models: chronic constriction injury and partial sciatic nerve injury. METHODS: A chronic constriction injury is created by placing four loosely tied ligatures around the right sciatic nerve. A partial sciatic nerve injury was created by tight ligation of one third to one half of the right sciatic nerve. All drugs were injected intrathecally 7 and 11 days after the nerve injury. The effect of the drugs was reflected in the degree of paw withdrawal latency to thermal nociceptive stimulation. The paw withdrawal latencies of injured and uninjured paws were measured 5, 15, 30, and 60 min after the drugs were injected. RESULTS: In the chronic constriction injury model, intrathecal morphine increased the paw withdrawal latencies of injured and uninjured paws. PD135158, a cholecystokinin-B receptor antagonist, potentiated the analgesic effect of morphine on injured and uninjured paws. In the partial sciatic nerve injury model, the effect of morphine on the injured paw was less potent than that on the uninjured paw, and PD135158 potentiated the morphine analgesia in the uninjured paw and had only a minor effect on the morphine analgesia in the injured paw. CONCLUSIONS: The effectiveness of morphine for thermal hyperalgesia after nerve injury depends on the type of nerve injury. The role of the cholecystokinin-B receptor in morphine analgesia in thermal hyperalgesia after nerve injury also depends on the type of nerve injury.  (+info)

Glycine-extended gastrin exerts growth-promoting effects on human colon cancer cells. (8/478)

BACKGROUND: Since human colon cancers often contain significant quantities of progastrin-processing intermediates, we sought to explore the possibility that the biosynthetic precursor of fully processed amidated gastrin, glycine-extended gastrin, may exert trophic effects on human colonic cancer cells. MATERIALS AND METHODS: Binding of radiolabeled glycine-extended and amidated gastrins was assessed on five human cancer cell lines: LoVo, HT 29, HCT 116, Colo 320DM, and T 84. Trophic actions of the peptides were assessed by increases in [3H]thymidine incorporation and cell number. Gastrin expression was determined by northern blot and radioimmunoassay. RESULTS: Amidated gastrin did not bind to or stimulate the growth of any of the five cell lines. In contrast, saturable binding of radiolabeled glycine-extended gastrin was seen on LoVo and HT 29 cells that was not inhibited by amidated gastrin (10(-6) M) nor by a gastrin/CCKB receptor antagonist (PD 134308). Glycine-extended gastrin induced a dose-dependent increase in [3H]thymidine uptake in LoVo (143 +/- 8% versus control at 10(-10) M) and HT 29 (151 +/- 11% versus control at 10(-10) M) cells that was not inhibited by PD 134308 or by a mitogen-activated protein (MAP) or ERK kinase (MEK) inhibitor (PD 98509). Glycine-extended gastrin did stimulate jun-kinase activity in LoVo and HT 29 cells. The two cell lines expressed the gastrin gene at low levels and secreted small amounts of amidated gastrin and glycine-extended gastrin into the media. CONCLUSIONS: Glycine-extended gastrin receptors are present on human colon cancer cells that mediate glycine-extended gastrin's trophic effects via a MEK-independent mechanism. This suggests that glycine-extended gastrin and its novel receptors may play a role in colon cancer cell growth.  (+info)