Strain variation and geographic endemism in Streptococcus iniae. (41/286)

Twenty-six Israeli isolates of Streptococcus iniae from both marine and fresh/brackish water sources were compared with each other and with 9 foreign isolates. All the isolates were tentatively identified according to their biochemical profile. Direct sequencing of approximately 600 bp PCR products of the 16S rDNA confirmed their identification as S. iniae at the molecular level and revealed a new (one-nucleotide) variant among Israeli isolates, in addition to 2 variants that had been previously reported. Strain variation was further examined by subjecting the isolates to randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analyses. The RAPD method allowed separation of the isolates into only 2 groups, one including 5 Israeli fresh/brackish water isolates and one including all the other isolates. The AFLP method grouped the Israeli marine isolates into one homogeneous cluster, although they had been obtained in different years (1995 to 2001) from different species of fish, and from wild (Red Sea) as well as cultured (both Mediterranean and Red Sea) sources. The Israeli fresh/brackish water isolates and foreign isolates separated into distinct entities that clustered at generally high degrees of similarity. The distance between the clusters of the Israeli marine and fresh/brackish water isolates indicates that the S. iniae streptococcosis that has been afflicting the aquaculture industries in the 2 environments in recent years was caused by distinct strains. AFLP showed superior discriminative properties over RAPD in detecting intraspecific variation and proved to be an important tool for the characterization of S. iniae. A correlation between strain variation and geographic endemism was established.  (+info)

Livoneca sinuata (Crustacea; Isopoda; Cymothoidae) on Loligo vulgaris from Turkey, and unusual cymothoid associations. (42/286)

In this paper, an unusual association of Livoneca sinuata (Crustacea; Isopoda; Cymothoidae) with the cephalopod Loligo vulgaris is reported for the first time from the Aegean sea coasts of Turkey. Moreover, a review of all the cases of unusual associations involving cymothoids is performed.  (+info)

Symbiosis-induced adaptation to oxidative stress. (43/286)

Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.  (+info)

The enigma of prokaryotic life in deep hypersaline anoxic basins. (44/286)

Deep hypersaline anoxic basins in the Mediterranean Sea are a legacy of dissolution of ancient subterranean salt deposits from the Miocene period. Our study revealed that these hypersaline basins are not biogeochemical dead ends, but support in situ sulfate reduction, methanogenesis, and heterotrophic activity. A wide diversity of prokaryotes was observed, including a new, abundant, deeply branching order within the Euryarchaeota. Furthermore, we demonstrated the presence of a unique, metabolically active microbial community in the Discovery basin, which is one of the most extreme terrestrial saline environments known, as it is almost saturated with MgCl2 (5 M).  (+info)

Roseobacter-like bacteria in red and mediterranean sea aerobic anoxygenic photosynthetic populations. (45/286)

Bacteriochlorophyll a-containing aerobic anoxygenic phototrophs (AAnP) have been proposed to account for up to 11% of the total surface water microbial community and to potentially have great ecological importance in the world's oceans. Recently, environmental and genomic data based on analysis of the pufM gene identified the existence of alpha-proteobacteria as well as possible gamma-like proteobacteria among AAnP in the Pacific Ocean. Here we report on analyses of environmental samples from the Red and Mediterranean Seas by using pufM as well as the bchX and bchL genes as molecular markers. The majority of photosynthesis genes retrieved from these seas were related to Roseobacter-like AAnP sequences. Furthermore, the sequence of a novel photosynthetic operon organization from an uncultured Roseobacter-like bacterial artificial chromosome retrieved from the Red Sea is described. The data show the presence of Roseobacter-like bacteria in Red and Mediterranean Sea AAnP populations in the seasons analyzed.  (+info)

Thalassobacter stenotrophicus gen. nov., sp. nov., a novel marine alpha-proteobacterium isolated from Mediterranean sea water. (46/286)

A Gram-negative, slightly halophilic, strictly aerobic, chemo-organotrophic bacterium was isolated from Mediterranean sea water near Valencia (Spain). 16S rRNA gene sequence comparisons showed that the isolate represented a separate branch within the alpha-3 subclass of the Proteobacteria, now included within the order 'Rhodobacterales'. Jannaschia helgolandensis was the closest relative, but their low sequence similarity and other features indicated that they were not related at the genus level. Isolate 5SM22T produced bacteriochlorophyll a and grew on solid media as regular salmon-pink colonies. Cells are motile rods, with polar flagella. The DNA G+C content is 59.1 mol%. Morphological, physiological and genotypic differences from related, thus far known genera support the description of Thalassobacter stenotrophicus gen. nov., sp. nov. with strain 5SM22T (=CECT 5294T=DSM 16310T) as the type strain.  (+info)

Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. (47/286)

Six strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from the Mediterranean Sea. 16S rRNA gene sequence analysis indicated that the strains were affiliated within the alphaproteobacterial genus Brevundimonas, with Brevundimonas intermedia (99.4 %) and Brevundimonas vesicularis (99.2 %) as their closest relatives. This affiliation was supported by chemotaxonomic data (major polar lipids: phosphatidyl diacylglycerol, sulfoquinovosyl diacylglycerol and phosphatidyl glucopyranosyl diacylglycerol; major fatty acids: C(18 : 1), C(16 : 0), C(16 : 1), C(15 : 0), C(17 : 1)omega8c, 11-Me-C(18 : 1)omega5t). The results of DNA-DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the strains from all recognized Brevundimonas species. The strains therefore represent a novel species, for which the name Brevundimonas mediterranea sp. nov. is proposed, with the type strain V4.BO.10T)(=LMG 21911T=CIP 107934T).  (+info)

Reproduction of Mothocya epimerica (Crustacea: Isopoda: Cymothoidae), parasitic on the sand smelt Atherina boyeri (Osteichthyes: Atherinidae) in Greek lagoons. (48/286)

The reproduction and growth pattern of Mothocya epimerica (Crustacea: Isopoda: Cymothoidae), a protandrous hermaphroditic gill parasite of Atherina boyeri (Osteichthyes: Atherinidae), were investigated in the Mesolongi and Etolikon lagoons. The parasite shows an extensive reproductive period. Gravid females were found between April and November, and juveniles between May and December. M. epimerica grew allometrically (slopes of the total weight-total length regressions were >3). Females were significantly heavier than males. The relationship between number of eggs or mancas larvae (F) and total length (TL) was investigated in gravid female parasites in which the marsupium was still closed; the relationship was clearly curvilinear: F = 0.128TL3.18. The number of eggs or mancas larvae held in the marsupia of females increased proportionally with female length, varying from 39 in an isopod of 6.3 mm length to 158 in one of 8.5 mm length. The average number of eggs or mancas larvae was 76.70 +/- 27.8.  (+info)