Right-hemisphere dominance for the processing of sound-source lateralization. (17/637)

Cortical processing of change in direction of a perceived sound source was investigated in 12 human subjects using whole-head magnetoencephalography. The German word "da" was presented either with or without 0.7 msec interaural time delays to create the impression of right- or left-lateralized or midline sources, respectively. Midline stimuli served as standards, and lateralized stimuli served as deviants in a mismatch paradigm. Two symmetrically linked dipoles fitted to the mismatch fields showed stronger moments in the hemisphere contralateral to the side of the deviant. The right dipole displayed equal latencies to both left and right deviants, whereas left dipole latencies were longer for ipsilateral than contralateral deviants. Frequency analysis between 20-70 Hz and statistical probability mapping revealed increased induced gamma-band activity at 53+/-2.5 Hz to both types of deviants. Right deviants elicited spectral amplitude enhancements in this frequency range, peaking at latencies of 160 and 240 msec. These effects were localized bilaterally over the angular gyri and posterior temporal regions. Coherence analysis suggested the existence of two separate interhemispheric networks. For left-lateralized deviants, both spectral amplitude enhancements at 110 and 220 msec and coherence increases were restricted to the right hemisphere. In conclusion, both mismatch dipole latencies at the supratemporal plane and gamma-band activity in posterior parietotemporal areas suggested a right hemisphere engagement in the processing of bidirectional sound-source shifts. In contrast, left-hemisphere regions responded predominantly to contralateral events. These findings may help to elucidate phenomena such as unilateral auditory neglect.  (+info)

Effects of hypoglycemia on functional magnetic resonance imaging response to median nerve stimulation in the rat brain. (18/637)

The authors studied the effects of a standardized mild-moderate hypoglycemic stimulus (glucose clamp) on brain functional magnetic resonance imaging (fMRI) responses to median nerve stimulation in anesthetized rats. In the baseline period (plasma glucose 6.6 +/- 0.3 mmol/L), the MR signal changes induced by median nerve activation were determined within a fixed region of the somatosensory cortex from preinfusion activation maps. Subsequently, insulin and a variable glucose infusion were administered to decrease plasma glucose. The goal was to produce a stable hypoglycemic plateau (2.8 +/- 0.2 mmol/L) for 30 minutes. Thereafter, plasma glucose was restored to euglycemic levels (6.0 +/- 0.3 mmol/L). In the early phase of insulin infusion (15 to 30 minutes), before hypoglycemia was reached (4.7 +/- 0.3 mmol/L), the activation signal was unchanged. However, once the hypoglycemic plateau was achieved, the activation signal was significantly decreased to 57 +/- 6% of the preinfusion value. Control regions in the brain that were not activated showed no significant changes in MR signal intensity. Upon return to euglycemia, the activation signal change increased to within 10% of the original level. No significant activation changes were noted during euglycemic hyperinsulinemic clamp experiments. The authors concluded that fMRI can detect alterations in cerebral function because of insulin-induced hypoglycemia. The signal changes observed in fMRI activation experiments were sensitive to blood glucose levels and might reflect increases in brain metabolism that are limited by substrate deprivation during hypoglycemia.  (+info)

Effects of membrane polarization and ischaemia on the excitability properties of human motor axons. (19/637)

Multiple nerve excitability measurements have been proposed for clinical testing of nerve function, since excitability measures can provide evidence of altered axonal membrane properties and are complementary to conventional nerve conduction studies. An important determinant of excitability is membrane potential, and this study was undertaken to determine the changes in a range of excitability properties associated with alterations in membrane potential. Membrane potential was varied directly using DC polarizing currents and indirectly by ischaemia. The median nerve was stimulated at the wrist and the resultant compound muscle action potentials recorded from abductor pollicis brevis. Stimulus-response behaviour, strength-duration time constant (tau(SD)), threshold electrotonus to 100-ms polarizing currents, a current-threshold relationship and the recovery of excitability following supramaximal activation were each followed in four normal subjects during the two manoeuvres, using a recently described protocol. Membrane depolarization and ischaemia produced an increase in axonal excitability, an increase in the slope of the current-threshold relationship, a 'fanning in' of responses during threshold electrotonus, a decrease in super-excitability, and increases in both tau(SD) and the refractory period. Changes in the opposite direction occurred with membrane hyperpolarization and during the post-ischaemic period. One excitability parameter differentiated between the direct and indirect changes in membrane potential: late subexcitability was sensitive to polarizing currents but relatively insensitive to ischaemia, probably because of compensatory changes in extracellular potassium ions. These results should enable multiple excitability measurements to be used as a tool to identify changes in axonal membrane potential in neuropathy.  (+info)

Accommodation to depolarizing and hyperpolarizing currents in cutaneous afferents of the human median and sural nerves. (20/637)

To determine whether accommodation to depolarizing and hyperpolarizing stimuli differs for cutaneous afferents in the median and sural nerves, studies were performed in normal human subjects using threshold electrotonus. The changes in threshold for compound sensory action potentials of 50 % of maximum were recorded when the nerves were subjected to long-lasting depolarizing and hyperpolarizing DC. The premise was that the threshold changes largely mirror the underlying electrotonic changes in membrane potential. The maximal threshold changes produced by depolarizing and hyperpolarizing currents were greater for median afferents, suggesting that the DC produced greater changes in membrane potential in these afferents. Median afferents underwent greater accommodation to depolarizing currents than sural afferents and a greater threshold undershoot at the end of the currents, suggesting greater activity of a slow K+ conductance. Median afferents also underwent greater accommodation to hyperpolarizing currents, suggesting greater inward rectification. These conductances are voltage dependent, and the differences in accommodation could be due to greater changes in membrane potential for the median nerve. The changes in threshold produced by long-lasting depolarizing and hyperpolarizing currents of graded intensity were therefore measured. When the threshold changes were matched for the two nerves, median afferents underwent 22.4 % more accommodation to depolarizing currents and 28.7 % more accommodation to hyperpolarizing currents. We conclude that there is greater expression of two internodally located conductances responsible for accommodation on median afferents. The biophysical differences identified in this study might contribute to the finding that sural afferents have a greater tendency to dysfunction than median afferents.  (+info)

Differences in accommodative properties of median and peroneal motor axons. (21/637)

OBJECTIVES: To investigate whether accommodation to depolarising and hyperpolarising currents differs for motor axons of human upper and lower limb nerves. METHODS: The threshold tracking technique was used to measure threshold electrotonus for median and peroneal motor axons. The threshold current that produced a compound muscle action potential 50% of maximum was measured, and membrane potential was altered using subthreshold polarising currents of 330 ms duration but of variable intensity, from +40% (depolarising) to -100% (hyperpolarising) of the unconditioned threshold. RESULTS: The maximal threshold changes (the peak of the S1 phase of threshold electrotonus) were significantly greater in median axons for both depolarising and hyperpolarising currents. The subsequent phases of accommodation to depolarising currents (S2) and to hyperpolarising currents (S3) were also significantly greater in median axons. These findings raised the possibility that greater accommodation (S2 and S3) in median axons resulted from greater changes in membrane potential. However, regression of S2 against S1 to depolarising currents disclosed significantly greater accommodation (27.8%) for median axons, suggesting that slow K(+) conductances may be more prominent on median than peroneal axons. By contrast, the relation between S3 and S1 to hyperpolarising currents was similar for the two nerves, suggesting that the difference in inward rectification was merely because the conductance varies with the extent of hyperpolarisation. CONCLUSIONS: Slow K(+) conductances are more prominent for median motor axons than for peroneal axons. It would therefore be expected that axons innervating the lower limbs have less protection from depolarising stress and could develop ectopic activity more readily.  (+info)

Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. (22/637)

It has been postulated that sensorimotor integration is abnormal in dystonia. We investigated changes in motor cortical excitability induced by peripheral stimulation in patients with focal hand dystonia (12 patients with hand cramps) and with cervical dystonia (nine with spasmodic torticollis) compared with 16 age-matched normal controls. Motor evoked potentials (MEP) to focal (figure-of-eight coil) transcranial magnetic stimulation of the hand area were recorded from the right abductor pollicis brevis (APB), first dorsal interosseus (FDI), flexor carpi radialis and extensor carpi radialis muscles. Changes of test MEP size following conditioning stimulation of the right median nerve (or of the index finger) at conditioning-test (C-T) intervals of 50, 200, 600 and 1000 ms were analysed. Peripheral stimulation significantly reduced test MEP size in the APB and FDI muscles of normal control and spasmodic torticollis patients. The inhibitory effect was larger upon median nerve stimulation and reached a maximum at the C-T interval of 200 ms. On the contrary, hand cramp patients showed a significant facilitation of test MEP size. This study suggests that MEP suppression following peripheral stimulation is defective in patients with focal hand dystonia. Central processing of sensory input is abnormal in dystonia and may contribute to increased motor cortical excitability.  (+info)

Tension distribution to the five digits of the hand by neuromuscular compartments in the macaque flexor digitorum profundus. (23/637)

The macaque flexor digitorum profundus (FDP) consists of a muscle belly with four neuromuscular regions and a complex insertion tendon that divides to serve all five digits of the hand. To determine the extent to which compartments within FDP act on single versus multiple digits, we stimulated the primary nerve branch innervating each neuromuscular region while recording the tension in all five distal insertion tendons. Stimulation of each primary nerve branch activated a distinct region of the muscle belly, so that each primary nerve branch and the muscle region innervated can be considered a neuromuscular compartment. Although each neuromuscular compartment provided a distinct distribution of tension across the five distal tendons, none acted on only one digital tendon. Most of the distribution of tension to multiple digits could be attributed to passive biomechanical interactions in the complex insertion tendon, although for the larger compartments a wider distribution resulted from the broad insertion of the muscle belly. Nerve ligations excluded contributions of spinal reflexes or distal axon reflexes to the distribution of tension to multiple digits. We conclude that the macaque FDP consists of four neuromuscular compartments, each of which provides a distinct distribution of tension to multiple digits.  (+info)

Sympathetic skin response: a new test to diagnose erectile dysfunction. (24/637)

AIM: Electrophysiological monitoring of the activity of the penile sympathetic skin responses (PSSR) in healthy men and patients with erectile dysfunction (ED). METHODS: PSSR were recorded from the skin of penis with disk electrodes at the time of electric stimulation of left median nerves. RESULTS: PSSR were recorded from all the healthy men and almost all the patients. In healthy men the latency of P0, the latency of N1, the duration of N1 and the amplitude of N1 were 1,249 +/- 111 ms, 2,239 +/- 286 ms, 1,832 +/- 505 ms and 470 microV (median), respectively. In ED patients the latency of P0, the latency of N1, the duration of N1 and the amplitude of N1 were 1,467 +/- 183 ms (P < 0.01), 2,561 +/- 453 ms (P < 0.05), 2,560 +/- 861 ms ( P < 0. 01) and 91 microV ( P < 0.01), respectively. The normal latency of P0 was less than 1,471 ms. The normal amplitude of N1 was more than 235 microV. According to this normal value, of 20 patients 11 showed longer latency of P0, and 14 showed lower amplitude of N1 as compared with those of normal subjects. CONCLUSION: PSSR can be used as an electrophysiological method in assisting the diagnosis of ED.  (+info)