Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. (33/195)

Recurrent exposure of the developing fetus to cocaine produces persistent alterations in structure and function of the cerebral cortex. Neurons of the cerebral cortex are derived from two sources: projection neurons from the neuroepithelium of the dorsal pallium and interneurons from the ganglionic eminence of the basal telencephalon. The interneurons are GABAergic and reach the cerebral cortex via a tangential migratory pathway. We found that recurrent, transplacental exposure of mouse embryos to cocaine from embryonic day 8 to 15 decreases tangential neuronal migration and results in deficits in GABAergic neuronal populations in the embryonic cerebral wall. GABAergic neurons of the olfactory bulb, which are derived from the ganglionic eminence via the rostral migratory pathway, are not affected by the cocaine exposure suggesting a degree of specificity in the effects of cocaine on neuronal migration. Thus, one mechanism by which prenatal cocaine exposure exerts deleterious effects on cerebral cortical development may be by decreasing GABAergic neuronal migration from the ganglionic eminence to the cerebral wall. The decreased GABA neuron migration may contribute to persistent structural and functional deficits observed in the exposed offspring.  (+info)

A neuroanatomical and neuroendocrinological study into the relationship between social status and the GnRH system in cooperatively breeding female Damaraland mole-rats, Cryptomys damarensis. (34/195)

The gonadotrophin-releasing hormone (GnRH) system in female Damaraland mole-rats, Cryptomys damarensis, has been investigated to map the distribution of GnRH-immunoreactive (GnRH-IR) structures in the brain of this species and to assess whether changes in this system may mediate the inhibitory effect of social cues on fertility. The distribution of GnRH-IR cell bodies and fibres was similar to that of other mammals, forming a loose continuum along a septo-preoptico-infundibular pathway. GnRH-IR cell bodies were more abundant in the vicinity of the organum vasculosum of the lamina terminalis than in the medial basal hypothalamus. GnRH-IR cells and fibres were also found in the subfornical organ. The cell bodies were typically unipolar or bipolar. No differences were found in the morphology or size of the cell bodies or in the number of cells between non-reproductive females and reproductive females living together in a colony. However, GnRH concentrations, measured in the brain by radioimmunoassay, were significantly higher in non-reproductive females than in reproductive females; this finding was complemented by the reduced immunoreactivity for GnRH in the median eminence and proximal pituitary stalk of reproductive females. In contrast, the concentrations of GnRH measured by radioimmunoassay in non-reproductive and reproductive males did not differ. These results are consistent with the hypothesis that GnRH release is inhibited in the non-reproductive females but not in the non-reproductive males of this species.  (+info)

Neural activity protects hypothalamic magnocellular neurons against axotomy-induced programmed cell death. (35/195)

Axotomy typically leads to retrograde neuronal degeneration in the CNS. Studies in the hypothalamo-neurohypophysial system (HNS) have suggested that neural activity is supportive of magnocellular neuronal (MCN) survival after axotomy. In this study, we directly test this hypothesis by inhibiting neural activity in the HNS, both in vivo and in vitro, by the use of tetrodotoxin (TTX). After median eminence compression to produce axonal injury, unilateral superfusion of 3 microM TTX into the rat supraoptic nucleus (SON), delivered with the use of a miniature osmotic pump for 2 weeks in vivo, produced a decrease in the number of surviving MCNs in the TTX-treated SON, compared with the contralateral untreated side of the SON. In vitro application of 2.5 microM TTX for 2 weeks to the SON in organotypic culture produced a 73% decrease in the surviving MCNs, compared with untreated control cultures. Raising the extracellular KCl in the culture medium to 25 mM rescued the MCNs from the axotomy- and TTX-induced cell death. These data support the proposal that after axotomy, neural activity is neuroprotective in the HNS.  (+info)

Vascular endothelial cells promote acute plasticity in ependymoglial cells of the neuroendocrine brain. (36/195)

Glial and endothelial cells interact throughout the brain to define specific functional domains. Whether endothelial cells convey signals to glia in the mature brain is unknown but is amenable to examination in circumventricular organs. Here we report that purified endothelial cells of one of these organs, the median eminence of the hypothalamus, induce acute actin cytoskeleton remodeling in isolated ependymoglial cells and show that this plasticity is mediated by nitric oxide (NO), a diffusible factor. We found that both soluble guanylyl cyclase and cyclooxygenase products are involved in this endothelial-mediated control of ependymoglia cytoarchitecture. We also demonstrate by electron microscopy that activation of endogenous NO release in the median eminence induces rapid structural changes, allowing a direct access of neurosecretory axons containing gonadotropin-releasing hormone (GnRH) (the neuropeptide controlling reproductive function) to the portal vasculature. Local in vivo inhibition of NO synthesis disrupts reproductive cyclicity, a process that requires a pulsatile, coordinated delivery of GnRH into the hypothalamic-adenohypophyseal portal system. Our results identify a previously unknown function for endothelial cells in inducing neuroglial plasticity and raise the intriguing possibility that endothelial cells throughout the brain may use a similar signaling mechanism to regulate glial-neuronal interactions.  (+info)

Neonatal handling and reproductive function in female rats. (37/195)

Neonatal handling induces anovulatory estrous cycles and decreases sexual receptivity in female rats. The synchronous secretion of hormones from the gonads (estradiol (E2) and progesterone (P)), pituitary (luteinizing (LH) and follicle-stimulating (FSH) hormones) and hypothalamus (LH-releasing hormone (LHRH)) are essential for the reproductive functions in female rats. The present study aimed to describe the plasma levels of E2 and P throughout the estrous cycle and LH, FSH and prolactin (PRL) in the afternoon of the proestrus, and the LHRH content in the medial preoptic area (MPOA), median eminence (ME) and medial septal area (MSA) in the proestrus, in the neonatal handled rats. Wistar pup rats were handled for 1 min during the first 10 days after delivery (neonatal handled group) or left undisturbed (nonhandled group). When they reached adulthood, blood samples were collected through a jugular cannula and the MPOA, ME and MSA were microdissected. Plasma levels of the hormones and the content of LHRH were determined by RIA. The number of oocytes counted in the morning of the estrus day in the handled rats was significantly lower than in the nonhandled ones. Neonatal handling reduces E2 levels only on the proestrus day while P levels decreased in metestrus and estrus. Handled females also showed reduced plasma levels of LH, FSH and PRL in the afternoon of the proestrus. The LHRH content in the MPOA was significantly higher than in the nonhandled group. The reduced secretion of E2, LH, FSH and LHRH on the proestrus day may explain the anovulatory estrous cycle in neonatal handled rats. The reduced secretion of PRL in the proestrus may be related to the decreased sexual receptiveness in handled females. In conclusion, early-life environmental stimulation can induce long-lasting effects on the hypothalamus-pituitary-gonad axis.  (+info)

Expression of a dominant negative FGF receptor in developing GNRH1 neurons disrupts axon outgrowth and targeting to the median eminence. (38/195)

During development, neurons that synthesize and release gonadotropin-releasing hormone (GNRH1) extend their axons to the median eminence (ME) to establish neurosecretory contacts necessary for hormone secretion. Signals that coordinate this process are not known, but could involve the activation of fibroblast growth factor receptors (FGFRs) expressed on developing GNRH1 neurons. Using both whole-animal and cell culture approaches, this study examines the direct role of FGFR signaling in the extension and guidance of GNRH1 axons to the ME. In vivo retrograde labeling with fluorogold (FG) first showed a significant reduction in the projections of GNRH1 axons to the circumventricular organs (including the ME) in transgenic mice expressing a dominant negative FGF receptor (dnFGFR) in GNRH1 neurons. Using a primary GNRH1 neuronal culture system, we examined if compromised axon extension and directional growth led to the reduced axon targeting efficiency seen in vivo. Primary cultures of GNRH1 neurons were established from Embryonic Day 15.5 embryos, an age when GNRH1 neurons are actively targeting the ME. Cultured GNRH1 neurons expressing dnFGFR (dnFGFR neurons) exhibited attenuated activation of signaling pathways and reduced neurite outgrowth in response to FGF2. Further, dnFGFR neurons failed to preferentially target neurites toward cocultured ME explant and FGF2-coated beads, suggesting a defect in axon pathfinding. Together, these findings describe a direct role of FGFR signaling in the elongation and guidance of GNRH1 axons to the ME.  (+info)

Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. (39/195)

During corticogenesis, cells from the medial ganglionic eminence (MGE) migrate tangentially into the neocortical anlage. Here we report that gamma-aminobutyric acid (GABA), via GABAA receptors, regulates tangential migration. In embryonic telencephalic slices, bicuculline produced an outward current in migrating MGE-derived cells in the neocortex, suggesting the presence of and tonic activation by ambient GABA. Ambient GABA was also present in the MGE, although this required demonstration using as bioassay HEK293 cells expressing high-affinity alpha6/beta2/gamma2s recombinant GABAA receptors. The concentration of ambient GABA was 0.5+/-0.1 microM in both regions. MGE-derived cells before the corticostriate juncture (CSJ) were less responsive to GABA than those in the neocortex, and profiling of GABAA receptor subunit transcripts revealed different expression patterns in the MGE vis-a-vis the neocortex. These findings suggest a dynamic expression of GABAA receptor number or isoform as MGE-derived cells enter the neocortex and become tonically influenced by ambient GABA. Treatment with bicuculline or antibody against GABA did not affect migration of MGE-derived cells before the CSJ but decreased "crossing index," reflecting impeded migration past the CSJ into the neocortex. Treatment with diazepam or addition of exogenous GABA increased crossing index. We conclude that ambient GABA promotes cortical entry of tangentially migrating MGE-derived cells.  (+info)

Developmental changes of nitric oxide synthase expression in the rat hypothalamoneurohypophyseal system. (40/195)

The present study investigated the immunohistochemical localization of neuronal nitric oxide synthase (nNOS) in the hypothalamoneurohypophyseal system (HNS) of the developing rats on postnatal day 1 (PN1), 7 (PN7), 14 (PN14), 21 (PN21), and the adult rats. The nNOS-positive neurons were not discernable in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), and the median eminence (ME) at PN1 and PN7. A few neurons positive for nNOS were first detected at PN14. At PN21, the nNOS-positive cells in SON and PVN rapidly increased in number. The pattern of nNOS expression at this stage approached that of the adult. Moreover, the increase of nNOS expression in the SON and PVN during the postnatal period was accompanied by the maturation of arginine vasopressin (AVP) and oxytocin (OT) neurons as indicated by the number and size of OT or AVP neurons in the SON and PVN. The patterns of AVP versus OT expression also reached that of the adult by the end of the third postnatal week. The time course of the change in nNOS expression coincided with the maturation of AVP and OT neurons in the HNS and suggested that NO synthesized by conversion of NOS is involved in the modulation of activity of neurons in the SON and PVN of the HNS.  (+info)