Synergistic interaction between alpha 2-adrenergic agonists and benzodiazepines in rats. (17/170)

Both alpha 2-adrenergic agonists and benzodiazepines exert anxiolytic and sedative effects when administered as preoperative medications. Clinical effects achieved with a combination of drugs, representative of these classes of compounds, is greater than that which could be expected from a simple additive response. Therefore, we investigated the nature of the interaction between dexmedetomidine, the highly-selective alpha 2-adrenergic agonist, and midazolam in a series of in vivo and in vitro studies in rats. Rats were administered midazolam, dexmedetomidine, or a combination of midazolam and dexmedetomidine intravenously to derive three dose-response curves for loss of righting reflex (LRR). LRR was determined in rats in a rotating cage (4 rotations/min) by observing whether the rat failed to maintain its upright posture for greater than or equal to 15 s exactly 2.5 min after drug administration. The effect of either flumazenil (benzodiazepine receptor antagonist) or atipamezole (the alpha 2-adrenergic antagonist) on the LRR was also determined. A probit analysis was performed and an isobologram for the ED50 was derived to assess the nature of the interaction. Rat brain membranes were prepared for receptor binding assays using [3H]-flumazenil and [3H]-rauwolscine to characterize the benzodiazepine and alpha 2-adrenergic receptors, respectively. The ability of either midazolam or dexmedetomidine to displace the radiolabeled ligand from the alternative receptor was assessed. To detect a possible kinetic interaction between the two drugs, separate cohorts of rats were administered the two drugs individually or in combination at the combination ED50 doses.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. (18/170)

Dexmedetomidine, the highly selective alpha 2-adrenergic agonist, produces a dose-dependent hypnotic response in rats through a central mechanism. Because the locus coeruleus (LC) contains pathways involved in the maintenance of vigilance and a high prevalence of alpha 2 adrenoceptors, we investigated the role of this brainstem nucleus in the hypnotic response to dexmedetomidine. The experimental model consisted of chronic, stereotactically cannulated rats (n = 157) in which the hypnotic response to dexmedetomidine was assessed by the duration of the loss of their righting reflex. Correct placement of the cannula was confirmed histologically at necropsy. The hypnotic response to dexmedetomidine 0.3-333.3 micrograms administered into the LC increased in a dose-dependent fashion. Dexmedetomidine 6.6 micrograms injected 2 mm lateral to the LC did not cause the animals to lose their righting response. Atipamezole 0.07 micrograms-12 micrograms, a selective alpha 2-adrenergic antagonist, blocked the hypnotic response to dexmedetomidine 6.6 micrograms when both were administered into the LC. Also, atipamezole 0.7-30 micrograms, administered into the LC, blocked in a dose-dependent manner the hypnotic response to intraperitoneal (ip) dexmedetomidine 50 micrograms.kg-1. Atipamezole injected into the LC did not block the hypnotic response to pentobarbital 40 mg.kg-1 ip. Prazosin, an alpha 1-adrenergic antagonist, 4.2 micrograms into the LC or 1.0 mg.kg-1 ip, did not alter the hypnotic response to dexmedetomidine 6.6 micrograms into the LC. The present data suggest that alpha 2-adrenergic receptors in the LC appear to be a major site for the hypnotic action of dexmedetomidine.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

Premedication with oral dexmedetomidine alters hemodynamic actions of intravenous anesthetic agents in chronically instrumented dogs. (19/170)

Dexmedetomidine (the D-stereoisomer of medetomidine), a highly selective alpha 2-adrenoceptor agonist, has been demonstrated to produce analgesia and sedation and attenuate hemodynamic responses to emergence from inhalational anesthetics, which suggests a potential use for this drug as a premedicant for general anesthesia. The authors examined hemodynamic interactions between dexmedetomidine and three commonly used intravenous anesthetic agents with markedly different hemodynamic effects. Conscious, chronically instrumented dogs received intravenous induction doses of ketamine, propofol, or etomidate, followed by continuous infusions of each drug at four different doses for 15-min intervals on different days. Studies in six separate groups (range, 9-12 dogs/group) with and without pretreatment with oral dexmedetomidine (20 micrograms/kg) were completed. Heart rate, arterial pressure, left ventricular pressure, rate of increase of left ventricular pressure at 50 mmHg (dP/dt50), and cardiac output were continuously recorded. Dexmedetomidine administration caused a significant (P less than 0.05) decrease in heart rate, rate-pressure product, left ventricular dP/dt50, and cardiac output. Dexmedetomidine abolished or attenuated the increase in heart rate, rate-pressure product, cardiac output, and arterial pressure produced during induction of anesthesia with ketamine. After the dexmedetomidine pretreatment, continuous infusion of ketamine caused no increase in heart rate or rate-pressure product. However, ketamine significantly reduced left ventricular dP/dt50 compared to control in dogs premedicated with dexmedetomidine. Except for a significant reduction in systemic vascular resistance, dexmedetomidine did not significantly affect the hemodynamic response to induction of anesthesia with propofol. Similarly, dexmedetomidine did little to alter the hemodynamic response to induction of anesthesia with etomidate.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

Direct coronary and cerebral vascular responses to dexmedetomidine. Significance of endogenous nitric oxide synthesis. (20/170)

Dexmedetomidine activates alpha 2-adrenergic receptors in the central nervous system and in the peripheral vasculature. In vivo dexmedetomidine has been found to cause alterations in coronary and cerebral blood flows and arterial pressure by stimulation of vascular smooth muscle alpha 2 receptors. The direct vasoconstrictor effects of alpha 2-adrenergic agonists may be opposed by release of endothelium-derived relaxing factor believed to be nitric oxide. A functional endothelium was demonstrated recently in canine coronary collateral vessels. The objective of the current study was to assess the direct effect of dexmedetomidine on isolated canine proximal and distal coronary arteries, coronary collateral vessels, and middle cerebral arteries. Responses were measured in tissue baths in the presence of indomethacin 10(-5) M and in the absence and presence of NG nitro-l-arginine methyl ester (L-NAME), an inhibitor of vascular nitric oxide synthesis. Dexmedetomidine (3 x 10(-8) to 3 x 10(-3.9) M) caused constriction (3.9, 5.5, 72.8, and 2.3% for proximal and distal coronary arteries, middle cerebral arteries, and coronary collateral vessels, respectively, expressed as a percentage of KCl-induced contraction) in all vessels. This constriction was enhanced by the presence of L-NAME in all vessels except cerebral arteries. The selective alpha 2-adrenergic antagonist atipamezole (10(-4) M) abolished the response to low but not high concentrations of dexmedetomidine in middle cerebral arteries, proximal coronary arteries, and coronary collateral vessels.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. (21/170)

Dexmedetomidine (DMED) is a highly selective centrally acting alpha 2-adrenergic agonist thought to provide significant sedation without appreciable ventilatory effects. This double-blind, placebo-controlled experiment evaluated four dose levels of DMED (0.25, 0.5, 1.0, and 2.0 micrograms/kg intravenously over 2 min) in 37 healthy male volunteers. Measurements of sedation, arterial blood gases, resting ventilation, hypercapnic ventilatory response (HVR), and metabolic rate (O2 consumption and CO2 production) were performed at baseline, 10 min after DMED infusion, and thereafter at the end of each subsequent 45-min period. DMED caused sedation resulting in loss of responsiveness in most of the subjects administered 1.0 and 2.0 micrograms/kg; sedation was evident for 195 min following 2.0 micrograms/kg (P < .05). Ten minutes following infusion of 1.0 and 2.0 micrograms/kg, PaCO2 had increased by 5.0 and 4.2 mmHg, respectively (P < .05), and 60 min following 2.0 micrograms/kg, VE had decreased by 28% (P < .05). The placebo group showed a progressive increase in the HVR slope (50% increase by 330 min following the infusion; P < .05). Overall, across all the DMED doses, the slope was decreased (P < .05) at all times after DMED. The calculated ventilation at a PaCO2 of 55 mmHg was decreased (39%; P < .05) 10 min following 1.0 and 2.0 micrograms/kg, returning to control values by 285 min following 2.0 micrograms/kg. O2 consumption increased 16% (P < .05) at 10 min following 2.0 micrograms/kg; CO2 production decreased (22% at 60 min). By 5 h postinfusion, both had returned to normal.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. (22/170)

Dexmedetomidine (DMED) is a novel clonidine-like compound known to have sedative, analgesic, and cardiovascular stabilizing qualities. DMED is a more highly selective alpha 2-adrenergic agonist than clonidine. This investigation examined the hemodynamic effects of four selected iv doses in consenting healthy male volunteers. In a randomized, double-blind, placebo-controlled trial subjects received 0 (n = 9), 0.25 (n = 6) 0.5 (n = 6), 1.0 (n = 6), or 2.0 (n = 10) micrograms/kg of DMED by infusion (2 min). ECG, heart rate (HR), arterial blood pressure (MABP), bioimpedance cardiac output (CO), and plasma catecholamines concentrations (CA) were monitored from 90 min before to 360 min after infusion. Plasma DMED concentrations were measured. DMED produced a maximum decrease in MABP at 60 min of 14%, 16%, 23%, and 27% for the 0.25, 0.5, 1.0, and 2.0 micrograms/kg groups, respectively (P < .05). At 330 min MABP remained below baseline by 8% and 17% at the two largest doses (P < .05). Both HR and CO decreased maximally by both 17% at 105 min. The two largest doses produced a transient (peak at 3 min lasting < 11 min) increased in MABP (16 +/- 2.5 and 24 +/- 10 mmHg, respectively; P < .05) with a concomitantly reduced CO (41%, 2 micrograms/kg; P < .05) and HR (22%, 2 micrograms/kg; P < .05), whereas systemic vascular resistance doubled. Even the lowest dose decreased CA immediately to values close to 20 pg/ml for 5 h. A 2-min iv infusion of DMED produced a transient increase in MABP and a longer lasting decrease in MABP and CA. These DMED doses were well tolerated in the healthy volunteers.  (+info)

Ketamine as a probe for medetomidine stereoisomer inhibition of human liver microsomal drug metabolism. (23/170)

Medetomidine (MED) is a novel, selective, alpha 2 adrenergic agonist with potent sedative, hypnotic, and analgesic properties, currently undergoing evaluation as an anesthetic adjuvant. The pharmacologic effects of MED are stereospecific, due entirely to the D-isomer (DMED), whereas the L-isomer (LMED) is essentially inactive. DMED, a 4(5)substituted imidazole, has been shown to inhibit adrenal steroidogenesis and human liver microsomal alfentanil metabolism, reactions mediated by cytochrome P-450. The mechanism of MED inhibition of cytochrome P-450 is unknown. The purpose of this investigation was to determine the mechanism of DMED inhibition of human cytochrome P-450-mediated microsomal metabolism, using ketamine as a probe. Ketamine undergoes extensive hepatic biotransformation and has been used previously to characterize the effects of imidazole anesthetics on human P-450-catalyzed drug metabolism. Ketamine N-demethylation by microsomes from three human livers was measured by gas chromatography-mass spectrometry with selected-ion monitoring. DMED was a potent, competitive inhibitor of S(+) ketamine N-demethylation, with a Ki of 0.11-0.18 microM for the high affinity ketamine demethylase. The IC50 for DMED inhibition of therapeutic concentrations of racemic ketamine (10 microM) was 0.15 +/- 0.02 microM. Preincubation of DMED with microsomes and an NADPH generating system prior to ketamine addition had no additional effect on the inhibition of ketamine demethylase activity, thereby implicating the parent compound rather than a DMED metabolite as the inhibitory species. LMED, although pharmacologically inactive, had a greater inhibitory effect than DMED on racemic ketamine and ketamine enantiomer demethylation at therapeutic concentrations. Spectral studies showed that DMED interacted with microsomal cytochrome P-450 to elicit a Type II binding spectrum.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. (24/170)

Medetomidine is a relatively new sedative analgesic drug that is approved for use in dogs in Canada. It is the most potent alpha2-adrenoreceptor available for clinical use in veterinary medicine and stimulates receptors centrally to produce dose-dependent sedation and analgesia. Significant dose sparing properties occur when medetomidine is combined with other anesthetic agents correlating with the high affinity of this drug to the alpha2-adrenoreceptor. Hypoventilation occurs with medetomidine sedation in dogs; however, respiratory depression becomes most significant when given in combination with other sedative or injectable agents. The typical negative cardiovascular effects produced with other alpha2-agonists (bradycardia, bradyarrhythmias, a reduction in cardiac output, hypertension +/- hypotension) are also produced with medetomidine, warranting precautions when it is used and necessitating appropriate patient selection (young, middle-aged healthy animals). While hypotension may occur, sedative doses of medetomidine typically raise the blood pressure, due to the effect on peripheral alpha2-adrenoreceptors. Anticholinergic premedication has been recommended with alpha2-agonists to prevent bradyarrhythmias and, potentially, the reduction in cardiac output produced by these agents; however, current research does not demonstrate a clear improvement in cardiovascular function. Negatively, the anticholinergic induced increase in heart rate potentiates the alpha2-agonist mediated hypertension and may increase myocardial oxygen tension, demand, and workload. Overall, reversal with the specific antagonist atipamezole is recommended when significant cardiorespiratory complications occur. Other physiological effects of medetomidine sedation include; vomiting, increased urine volumes, changes to endocrine function and uterine activity, decreased intestinal motility, decreased intraocular pressure and potentially hypothermia, muscle twitching, and cyanosis. Decreased doses of medetomidine, compared with the recommended label dose, should be considered in combination with other sedatives to enhance sedation and analgesia and lower the duration and potential severity of the negative cardiovascular side effects. The literature was searched in Pubmed, Medline, Agricola, CAB direct, and Biological Sciences.  (+info)