Octamerization enables soluble CD46 receptor to neutralize measles virus in vitro and in vivo. (73/1483)

A chimeric fusion protein encompassing the CD46 ectodomain linked to the C-terminal part of the C4b binding protein (C4bp) alpha chain (sCD46-C4bpalpha) was produced in eukaryotic cells. This protein, secreted as a disulfide-linked homo-octamer, was recognized by a panel of anti-CD46 antibodies with varying avidities. Unlike monomeric sCD46, the octameric sCD46-C4bpalpha protein was devoid of complement regulatory activity. However, sCD46-C4bpalpha was able to bind to the measles virus hemagglutinin protein expressed on murine cells with a higher avidity than soluble monomeric sCD46. Moreover, the octameric sCD46-C4bpalpha protein was significantly more efficient than monomeric sCD46 in inhibiting virus binding to CD46, in blocking virus induced cell-cell fusion, and in neutralizing measles virus in vitro. In addition, the octameric sCD46-C4bpalpha protein, but not the monomeric sCD46, fully protected CD46 transgenic mice against a lethal intracranial measles virus challenge.  (+info)

CD46 transgene expression in pig peripheral blood mononuclear cells does not alter their susceptibility to measles virus or their capacity to downregulate endogenous and transgenic CD46. (74/1483)

CD46 (or membrane cofactor protein) protects autologous cells from complement-mediated lysis and has been expressed as a transgene in pigs to overcome complement-mediated hyperacute rejection of porcine organs upon transplantation into primates. Since CD46 has been identified as a receptor for measles virus (MV), the susceptibility of CD46-transgenic (tg) pig peripheral blood mononuclear cells (PBMC) to infection with MV strains which do and do not use CD46 as receptor was investigated. Surprisingly, it was found that MV vaccine strains (e.g. Edmonston) bound to tg as well as non-tg pig PBMC. Phytohaemagglutinin-stimulated CD46-tg and non-tg pig PBMC were equally well infected with MV vaccine strains irrespective of CD46 expression. Upon infection, tg CD46 was downregulated from the cell surface. In contrast, the binding capacity for MV wild-type strains to pig and human PBMC was low, irrespective of CD46 expression. These MV strains did not infect tg or non-tg pig cells. Expression of endogenous pig CD46 was detected with polyclonal sera against human CD46. After infection of pig PBMC with MV strain Edmonston, endogenous pig CD46 was also downregulated. This suggests an interaction between MV Edmonston and pig CD46. However, polyclonal CD46 sera did not inhibit infection with MV Edmonston indicating that CD46 may not exclusively act as a receptor for MV on these cells. Interestingly, similar results were observed using human PBMC. Data suggest that CD46 downregulation after interaction with MV may also occur in porcine organs which express endogenous and/or human CD46 as a means of protection against complement-mediated damage.  (+info)

Rubella antibody levels in juvenile rheumatoid arthritis. (75/1483)

Increased rubella antibody titres have been reported in patients with juvenile rheumatoid arthritis (JRA) and it has been suggested that rubella virus may be of importance in the aetiology or pathogenesis of the disease. In the present study, rubella and rubeola antibody titres in 85 patients with JRA were compared to age- and sex-matched controls. 41% of the patients did not have rubella antibody, but the geometric mean titre of those with JRA who had antibody was slightly higher than that of the controls with antibody (58-9 against 42-7; P less than 0-05). The level of rubella antibody titre correlated with serum IgG levels. There was no difference in rubeola antibody titres between patients and controls, and rubeola antibody did not correlate with serum IgG. Fifteen JRA patients developed rubella antibody after rubella vaccine or natural disease. This did not result in unusually high antibody titres and was associated with a mild exacerbation of symptoms in only two patients. This study suggests that the slight increase in rubella antibody in JRA is a nonspecific manifestation of increased immunoglobulins.  (+info)

Replication and persistence of measles virus in defined subpopulations of human leukocytes. (76/1483)

Replication of Edmonston strain measles virus was studied in several human lymphoblast lines, as well as in defined subpopulations of circulating human leukocytes. It was found that measles virus can productively infect T cells, B cells, and monocytes from human blood. These conclusions were derived from infectious center studies on segregated cell populations, as well as from ultrastructural analyses on cells labeled with specific markers. In contrast, mature polymorphonuclear cells failed to synthesize measles virus nucleocapsids even after infection at a relatively high multiplicity of infection. Measles virus replicated more efficiently in lymphocytes stimulated with mitogens than in unstimulated cells. However, both phytohemagglutinin and pokeweed mitogen had a negligible stimulatory effect on viral synthesis in purified populations of monocytes. In all instances the efficiency of measles virus replication by monocytes was appreciably less than that of mitogenically stimulated lymphocytes or of continuously culture lymphoblasts. Under standard conditions of infection, all of the surveyed lymphoblast lines produced equivalent amounts of measles virus regardless of the major histocompatibility (HL-A) haplotype. Hence, no evidence was found that the HL-A3,7 haplotype conferred either an advantage or disadvantage with respect to measles virus synthesis in an immunologically neutral environment. A persistent infection with measles virus could be established in both T and B lymphoblasts. The release of infectious virus from such persistently infected cells was stable over a period of several weeks and was approximately 100-fold less than peak viral titers obtained in each respective line after acute infection.  (+info)

Ten years of serological surveillance in England and Wales: methods, results, implications and action. (77/1483)

BACKGROUND: The first age-stratified serological survey of antibody to measles, mumps and rubella in the UK was conducted in 1986/87 prior to the introduction of MMR vaccine into the immunization programme. Serum collection and testing have continued annually, allowing trends over time to be monitored. These sera have also been available for ad hoc surveys of other infections. METHODS: Residual sera are collected in participating laboratories and sent to a central store where they are irrevocably unlinked from identifying data. A unique identity number is assigned to each serum and details of age and sex are collated on a database. The sera are accessed for testing as required. RESULTS: The results of recurring and other surveys performed over the last ten years are presented. These demonstrate that opportunistic serum samples are an ideal resource for serological surveillance programmes. CONCLUSIONS: The serological surveillance programme has provided past exposure profiles for many infections. These data have resulted in a number of national policy changes and have been instrumental in shaping the UK vaccination programme.  (+info)

Characterization of a region of the measles virus hemagglutinin sufficient for its dimerization. (78/1483)

Attachment of measles virus (MV) to its cellular receptor is mediated by the viral envelope glycoprotein hemagglutinin (H). H exists at the viral surface as a disulfide-linked dimer which may associate into a tetramer. We aimed to define regions of H essential for its homo-oligomerization. To delineate these more precisely, we have generated a series of H ectodomain truncation mutants and studied their abilities to form both homotypic complexes and heterotypic complexes with full-length H. We define a "minimal unit" which is sufficient for MV H dimerization as that encompassing residues 1 to 151. This unit forms both homodimers and heterodimers with full-length H protein, although neither is transported to the cell surface even in the presence of other MV proteins. We show that cysteine residues at positions 139 and 154 are both critical in mediating covalent dimerization, not only of the truncated H mutants but also of full-length MV H protein. Even those cysteine mutants unable to form covalent intermolecular interactions are biologically active, mediating the formation of syncytia, albeit at a reduced rate. We demonstrate that this impaired capacity to mediate cell-to-cell fusion is based mainly on a reduced transport rate of the mutant molecules to the cell surface, indicating a role for covalent intermolecular interactions in efficient transport of MV H dimers to the cell surface.  (+info)

Recovery of pathogenic measles virus from cloned cDNA. (79/1483)

Reverse genetics technology so far established for measles virus (MeV) is based on the Edmonston strain, which was isolated several decades ago, has been passaged in nonlymphoid cell lines, and is no longer pathogenic in monkey models. On the other hand, MeVs isolated and passaged in the Epstein-Barr virus-transformed marmoset B-lymphoblastoid cell line B95a would retain their original pathogenicity (F. Kobune et al., J. Virol. 64:700-705, 1990). Here we have developed MeV reverse genetics systems based on the highly pathogenic IC-B strain isolated in B95a cells. Infectious viruses were successfully recovered from the cloned cDNA of IC-B strain by two different approaches. One was simple cotransfection of B95a cells, with three plasmids each encoding the nucleocapsid (N), phospho (P), or large (L) protein, respectively, and their expression was driven by the bacteriophage T7 RNA polymerase supplied by coinfecting recombinant vaccinia virus vTF7-3. The second approach was transfection with the L-encoding plasmid of a helper cell line constitutively expressing the MeV N and P proteins and the T7 polymerase (F. Radecke et al., EMBO J. 14:5773-5784, 1995) on which B95a cells were overlaid. Virus clones recovered by both methods possessed RNA genomes identical to that of the parental IC-B strain and were indistinguishable from the IC-B strain with respect to growth phenotypes in vitro and the clinical course and histopathology of experimentally infected cynomolgus monkeys. Thus, the systems developed here could be useful for studying viral gene functions in the context of the natural course of MeV pathogenesis.  (+info)

Protection against measles virus-induced encephalitis by anti-mimotope antibodies: the role of antibody affinity. (80/1483)

Synthetic peptides mimicking a conformational B-cell epitope (M2) of the measles virus fusion protein (MVF) were used for the immunization of BALB/c mice and the anti-peptide and anti-virus antibody titers induced were compared. Of the panel of tested peptides, a chimeric peptide consisting of two copies of a T-helper epitope (residues 288-302 of MVF) and one copy of the mimotope M2 (TTM2) and a multiple antigen peptide with eight copies of M2 (MAP-M2) induced the highest titers of anti-M2 and anti-MV antibodies. Furthermore, peptides TTM2 and MAP-M2 induced antibodies with highest affinity for the mimotope and highest avidity for measles virus. Immunization with the MAP-M2 construct induced high titers of high-affinity anti-M2 antibody despite the absence of a T-helper epitope, and lymphocyte proliferation data suggest that the addition of M2 to the MAP resulted in the generation of a structure capable of stimulating T-cell help. Sera with anti-M2 reactivity were pooled according to affinity values for binding to M2, and high- and low-affinity pools were tested for their ability to prevent MV-induced encephalitis in a mouse model. The high-affinity serum pool conferred protection in 100% of mice, whereas the lower affinity pool conferred protection to only 50% of animals. These results indicate the potential of mimotopes for use as synthetic peptide immunogens and highlight the importance of designing vaccines to induce antibodies of high affinity.  (+info)