Plasmin triggers rapid contraction and degradation of fibroblast-populated collagen lattices. (65/1297)

We examined the role of the serine proteinase plasmin in regulating fibroblast-mediated tissue remodeling during wound healing. As an in vitro model system, collagen lattices were seeded with human dermal fibroblasts, and various concentrations of plasmin were added to the medium of the contracting lattices. Within 16 h, fibroblast-populated collagen lattices treated with plasmin rapidly contracted from approximately 20 mm to less than 2 mm in diameter. Measurements of collagen lattices with radiolabeled collagen indicated that, when these lattices included either fibroblasts or conditioned medium derived from fibroblast-populated collagen lattices, exogenous plasmin induced collagen degradation and rapid lattice contraction. Western blot analyses of conditioned medium demonstrated that fibroblasts in collagen lattices secreted the latent matrix metalloproteinase, MMP-1, which was subsequently cleaved by plasmin. Additionally, rapidlattice contraction and collagen degradation were blocked when collagen lattices were treated simultaneously with plasmin and aprotinin or a tissue inhibitor of metalloproteinases, TIMP-1. These results provide strong evidence that plasmin regulates rapid contraction of collagen lattices by activating fibroblast-secreted MMP-1 that triggers collagen degradation. The findings from this study suggest that fibroblast-populated collagen lattices can be used as an in vitro model system to investigate the mechanisms by which plasmin and cell-secreted plasminogen activators control MMP-1 mediated extracellular lattice degradation and remodeling during wound healing.  (+info)

Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. (66/1297)

Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to enlargement of hypertrophic zones of growth plates and delayed formation of secondary ossification centers in long bones. In an in vivo corneal angiogenesis assay, null mice did not have angiogenic response to implanted FGF-2, suggesting that the defect in angiogenesis is not restricted to cartilage alone. In tissues from null mice, activation of latent matrix metalloproteinase 2 was deficient, suggesting that MT1-MMP is essential for its activation in vivo.  (+info)

Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. (67/1297)

OBJECTIVE: To examine the mechanism of interleukin-1 (IL-1)-induced collagenase 3 (matrix metalloproteinase 13 [MMP-13]) gene expression in cultured chondrocytes for the purpose of better understanding how the gene is induced in these cells, and how it contributes to cartilage degradation in osteoarthritis. METHODS: The transcriptional and posttranscriptional responses of the MMP-13 gene to IL-1 were assessed first. Then, direct inhibitors of mitogen-activated protein kinase (MAPK) signaling pathways and a constitutive repressor of nuclear factor kappaB (NF-kappaB) were used to assess the role of each pathway in IL-1-mediated induction of MMP-13. RESULTS: We found that IL-1 induction of MMP-13 requires p38 activity, c-Jun N-terminal kinase (JNK) activity and NF-kappaB translocation. These results suggest that both NF-kappaB and activator protein 1 transcription factors are necessary for IL-1 induction of MMP-13. We also compared the signaling pathways necessary for IL-1 to stimulate collagenase 1 (MMP-1) in articular chondrocytes and chondrosarcoma cells and found that IL-1 induction of MMP-1 requires different pathways from those required by MMP-13. In chondrosarcoma cells, MMP-1 induction depends on p38 and MEK (an MAPK kinase of the extracellular signal-regulated kinase pathway) and does not require JNK or NF-kappaB. In articular chondrocytes, inhibition of MEK had no effect, while inhibition of p38 gave variable results. CONCLUSION: These studies demonstrate, for the first time, that p38, JNK, and NF-kappaB are required for IL-1 induction of MMP-13. The results also highlight the differential requirements for signaling pathways in the induction of MMP-1 and MMP-13. Additionally, they demonstrate that induction of MMP-1 by IL-1 in chondrocytic cells depends on unique combinations of signaling pathways that are cell type-specific.  (+info)

Production of tissue inhibitor of metalloproteinases 3 is selectively enhanced by calcium pentosan polysulfate in human rheumatoid synovial fibroblasts. (68/1297)

OBJECTIVE: To determine the effects of calcium pentosan polysulfate (CaPPS) on the production of matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMP), in cultures of rheumatoid synovial fibroblasts. METHODS: The production of MMP-1, -2, -3, -7, -8, -9, and -13 and of TIMP-1, -2, -3, and -4 in cultured rheumatoid synovial fibroblasts treated with 0.1, 1, and 10 microg/ml CaPPS in the presence and absence of 100 units/ml interleukin-1alpha (IL-1alpha) was examined by a sandwich enzyme immunoassay system and/or immunoblotting. The messenger RNA (mRNA) expression of TIMP-3 and membrane type 1 MMP was determined by Northern blotting, and the cells expressing TIMP-3 gene in rheumatoid synovium were identified by in situ hybridization. The synthesis and secretion of TIMP-3 protein were monitored by pulse-chase experiments. TIMP-3 was immunolocalized in untreated or CaPPS-treated rheumatoid synovial fibroblasts and synovium using an avidin-biotin-peroxidase complex method. RESULTS: Treatment of cultured rheumatoid synovial fibroblasts with CaPPS resulted in a dose-dependent increase in the production of TIMP-3 in both cell lysates and media from the treated cells. However, CaPPS did not affect the levels of the other MMPs or TIMPs examined. The production of TIMP-3 was further enhanced in the cells treated with both IL-1alpha and CaPPS. Immunohistochemistry confirmed the enhanced production of TIMP-3 by cells exposed to CaPPS. The mRNA level of TIMP-3 increased 3.4-fold by treating rheumatoid synovial fibroblasts with IL-1alpha, but CaPPS itself did not alter the expression levels in the IL-1alpha-treated or -untreated cells. Pulse-chase studies demonstrated that translation for TIMP-3 protein was enhanced by CaPPS treatment. In situ hybridization and immunohistochemistry indicated that TIMP-3 was expressed mainly in the hyperplastic lining cells of rheumatoid synovium, and that the production of this protein by these immunoreactive lining cells was significantly increased by treatment with CaPPS. CONCLUSION: The present study is the first to demonstrate that the new antiarthritic drug, CaPPS, selectively enhanced TIMP-3 production at the posttranscription level in cultured rheumatoid synovial fibroblasts and in the lining cells of rheumatoid synovium. By this mechanism, CaPPS may be able to modulate joint tissue destruction in rheumatoid arthritis.  (+info)

Secretion and gene expression of metalloproteinases and gene expression of their inhibitors in porcine corpora lutea at different stages of the luteal phase. (69/1297)

We hypothesize that spontaneous regression of corpora lutea (CL) involves short-lasting restructure of luteal tissue with an activation of matrix metalloproteinases (MMPs) and their respective inhibitors (tissue inhibitors of metalloproteinase, TIMPs). This was tested by determining the gene expression of MMP-1, MMP-2, and MMP-9 and respective TIMP-1 and TIMP-2 in luteal tissue from sows at the early, midluteal, and late luteal phase (Days 6-8, Days 9-11, and Days 13-15 of estrous cycle). Gene expression of the three MMPs was low in early, slightly higher in midluteal, and significantly elevated (P < 0.05) in regressing CL. An inverse pattern was found for gene expression of TIMP-1 and TIMP-2. Under culture conditions, the release of MMPs was determined from steroidogenic large luteal cells (LLC). LLC harvested from regressing CL released significantly (P < 0.05) more active MMPs than cells obtained from CL at the early luteal phase. As luteolysis can be induced by prostaglandin F(2alpha) (PGF(2alpha)) and tumor necrosis factor alpha (TNF), we studied their effects on LLC under culture conditions. Treatment of cells with PGF(2alpha) or TNF (10(-7) M or 3 x 10(-9) M, respectively) induced a significantly higher release of MMPs, and gene expression was also significantly stimulated in comparison to that in untreated LLC. The gene expression of TIMPs remained unaffected by either treatment. It is concluded that at the beginning of luteolysis, MMPs are expressed and released in high amounts and that this is essential for the structural regression of the CL.  (+info)

beta2-microglobulin induces MMP-1 but not TIMP-1 expression in human synovial fibroblasts. (70/1297)

BACKGROUND: beta2-Microglobulin (beta2m) amyloidosis is a destructive articular disease that causes significant morbidity in patients undergoing hemodialysis. The amyloid deposits contain beta2m, some of which is altered with advanced glycation end products (AGE-beta2m). The deposits are located principally in joint structures, with adjacent degradation of cartilage and bone. We hypothesized that one of the mechanisms by which beta2m induces joint destruction is to induce the release of matrix metalloproteinase-1 (MMP-1), but not tissue inhibitor of metalloproteinase-1 (TIMP-1), from synovial fibroblasts. METHODS: To test this hypothesis and determine the role of AGE-beta2m, we incubated human osteoarthritic synovial fibroblasts in the presence and absence of beta2m and AGE-beta2m and measured the release of interstitial collagenase (MMP-1) and/or TIMP-1 by enzyme-linked immunosorbent assay and Northern blot analysis. RESULTS: beta2m and AGE-beta2m at 10 and 25 microg/mL induced the release of MMP-1 from human osteoarthritic synovial fibroblasts at 24 hours. In contrast, there was no increased release of TIMP-1, leading to an increase in the MMP-1/TIMP-1 ratio indicative of uncontrolled collagenolysis. A similar dose response was observed at 48 hours, except that AGE-beta2m had no effect over control cultures. MMP-1 mRNA expression by Northern blot analysis paralleled these findings. The source of the fibroblasts did not alter the results. Finally, we demonstrated that doxycycline, a treatment for arthritis, can inhibit the release of MMP-1 from synovial fibroblasts incubated with beta2m. CONCLUSION: beta2m, at physiologically relevant concentrations, induces the release of MMP-1 without concomitant release of TIMP-1 from human synovial fibroblasts, leading to uncontrolled collagenolysis. The alteration of beta2m with AGE did not alter this effect at 24 hours, but blocked the effect at 48 hours. These findings may account for the tissue destruction seen in beta2m amyloidosis.  (+info)

Biomechanical regulation of human monocyte/macrophage molecular function. (71/1297)

When the monocyte infiltrates a tissue, adhesion to the extracellular matrix provides structural anchors, and the cell may be deformed through these attachments. To test the hypothesis that human monocytes/macrophages are mechanically responsive, we studied the effects of small cyclic mechanical deformations on cultured human monocytes/macrophages. When monocytes/macrophages were subjected to 4% strain at 1 Hz for 24 hours, neither matrix metalloproteinase (MMP)-1 nor MMP-3 was induced; however, in the presence of phorbol myristate acetate, strain augmented MMP-1 expression by 5.1 +/- 0.7-fold (P < 0.05) and MMP-3 expression by 1. 6 +/- 0.1-fold (P < 0.05). In contrast, MMP-9 expression was not changed by mechanical strain in the presence or absence of phorbol myristate acetate. Deformation rapidly induced the immediate early response genes c-fos and c-jun. In addition, mechanical deformation induced the transcription factor PU.1, an ets family member that is essential in monocyte differentiation, as well as mRNA for the M-CSF receptor. These studies demonstrate that human monocytes/macrophages respond to mechanical deformation with selective augmentation of MMPs, induction of immediate early genes, and induction of the M-CSF receptor. In addition to enhancing the proteolytic activity of macrophages within repairing tissues, cellular deformation within tissues may play a role in monocyte differentiation.  (+info)

MMP-1 is a prognostic marker for hematogenous metastasis of colorectal cancer. (72/1297)

BACKGROUND: Degradation of basement membrane and extracellular matrix by matrix metalloproteinases (MMPs) is believed to be an essential step in the complicated process of hematogenous metastasis. MMP-1 is a member of collagenases, a family of MMPs that degrades collagens type I, II, and III, main components of the interstitial stroma. The purpose of this study was to investigate the expression of MMP-1 in colorectal cancer and its correlation with hematogenous metastasis. Patients and Methods. We examined 133 cases of colorectal cancer (Dukes A: 72; Dukes B: 26; Dukes C: 23; Dukes D: 12). Sections were cut from formalin-fixed, paraffin-embedded samples containing the deepest site of cancer invasion and stained immunohistochemically with a monoclonal antibody to MMP-1. According to the area of the tumor that was stained, patients were divided into high- and low-MMP-1 expression groups. RESULTS: MMP-1 expression was observed in the cytoplasm of cancer cells, some stromal cells, and a few normal epithelial cells of colonic mucosa. High MMP-1 expression was found in 47 (35.3%) cases and low in 86 (64.7%). Hematogenous metastasis was identified in 14 (29.8%) of high-MMP-1 groups and 12 (13.9%) of low-MMP-1 groups. MMP-1 expression significantly correlated with hematogenous metastasis of colorectal cancer, but no correlation was found between MMP-1 expression and the other clinicopathological features investigated. CONCLUSIONS: MMP-1 expression may be a novel marker for hematogenous metastasis of colorectal cancer, and its inhibition may be a strategy for prevention of metastasis.  (+info)