Kinetics of absorption atelectasis during anesthesia: a mathematical model. (41/9350)

Recent computed tomography studies show that inspired gas composition affects the development of anesthesia-related atelectasis. This suggests that gas absorption plays an important role in the genesis of the atelectasis. A mathematical model was developed that combined models of gas exchange from an ideal lung compartment, peripheral gas exchange, and gas uptake from a closed collapsible cavity. It was assumed that, initially, the lung functioned as an ideal lung compartment but that, with induction of anesthesia, the airways to dependent areas of lung closed and these areas of lung behaved as a closed collapsible cavity. The main parameter of interest was the time the unventilated area of lung took to collapse; the effects of preoxygenation and of different inspired gas mixtures during anesthesia were examined. Preoxygenation increased the rate of gas uptake from the unventilated area of lung and was the most important determinant of the time to collapse. Increasing the inspired O2 fraction during anesthesia reduced the time to collapse. Which inert gas (N2 or N2O) was breathed during anesthesia had minimal effect on the time to collapse.  (+info)

Modeling the effects of proteins on pH in plasma. (42/9350)

Stewart's model of plasma acid-base balance (Can. J. Physiol. Pharmacol. 61: 1444-1461, 1983) has three weaknesses in the treatment of weak acids: 1) the combination of all weak acids into one entity, 2) inappropriate chemistry for the protein combination with H+, and 3) undocumented values for the dissociation parameters. The present study models serum albumin acid-base properties by fixed negative charges and the association of H+ with the imidazole side chain of histidine. This model has three parameters: 1) the net negative fixed charge (21 eq/mol), 2) the number of histidine residues (16/mol), and 3) the association constant for the imidazole side chain (1.77 x 10(-7) eq/l), all determined from published values. The model was compared with that of Figge, Mydosh, and Fencl (J. Lab. Clin. Med. 120: 713-719, 1992) and with the pH data of Figge, Rossing, and Fencl (J. Lab. Clin. Med. 117: 453-467, 1991). The predictions of pH were excellent, comparable to those found by Figge, Mydosh, and Fencl. The model has the advantages that its structure and parameter values are supported by the literature and that the acid-base effects of factors modifying protein can be investigated.  (+info)

Magnetic measurements of pulmonary contamination. (43/9350)

The magnitic determination of pulmonary contamination is based on the remanent magnetization of ferromagnetic contaminating particles. The remanent field of the externally magnetized particles is proportional to their amount and shows their distribution. Although only magnetizable particles are detected with this method, the amount of the inhaled ferromagnetic substance can be used when the total dust exposure of the worker is estimated. In this work five shipyard welders were studied. First the particles disposed to the lungs were externally magnetized and then their distribution was mapped with a sensitive magnetometer. The magnitudes of the remanent fields measured from the welders differed from the fields measured from controls by several orders of magnitude. The radiographic findings showed a good correlation with the magnetic measurements, and further experiments will prove whether this method can partly replace presently used radiological investigations.  (+info)

Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. (44/9350)

The stoichiometry of the rat and flounder isoforms of the renal type II sodium-phosphate (Na+-Pi) cotransporter was determined directly by simultaneous measurements of phosphate (Pi)-induced inward current and uptake of radiolabeled Pi and Na+ in Xenopus laevis oocytes expressing the cotransporters. There was a direct correlation between the Pi-induced inward charge and Pi uptake into the oocytes; the slope indicated that one net inward charge was transported per Pi. There was also a direct correlation between the Pi-induced inward charge and Na+ influx; the slope indicated that the influx of three Na+ ions resulted in one net inward charge. This behavior was similar for both isoforms. We conclude that for both Na+-Pi cotransporter isoforms the Na+:Pi stoichiometry is 3:1 and that divalent Pi is the transported substrate. Steady-state activation of the currents showed that the Hill coefficients for Pi were unity for both isoforms, whereas for Na+, they were 1.8 (flounder) and 2.5 (rat). Therefore, despite significant differences in the apparent Na+ binding cooperativity, the estimated Na+:Pi stoichiometry was the same for both isoforms.  (+info)

Geometric representation of the mechanisms underlying human curvature detection. (45/9350)

Combined manipulation of blur, line length and contrast reveal two distinct processes involved in curvature detection. When line length is small relative to blur, thresholds are almost directly proportional to blur and independent of line length. When line length is large relative to blur thresholds are directly proportional to line length and independent of blur. The aspect ratio (line length/blur) of curved contours represents a scale-invariant metric which forms the decisive factor in determining curvature performance.  (+info)

Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate. (46/9350)

We examined the properties of the foveal, parafoveal, and near peripheral cone lattice in human neonates. To estimate the ability of these lattices to transmit the information used in contrast sensitivity and visual acuity tasks, we constructed ideal-observer models with the optics and photoreceptors of the neonatal eye at retinal eccentricities of 0, 5, and 10 degrees. For ideal-observer models limited by photon noise, the eye's optics, and cone properties, contrast sensitivity was higher in the parafovea and near periphery than in the fovea. However, receptor pooling probably occurs in the neonate's parafovea and near periphery as it does in mature eyes. When we add a receptor-pooling stage to the models of the parafovea and near periphery, ideal acuity is similar in the fovea, parafovea, and near periphery. Comparisons of ideal and real sensitivity indicate that optical and receptoral immaturities impose a significant constraint on neonatal contrast sensitivity and acuity, but that immaturities in later processing stages must also limit visual performance.  (+info)

Temporal aspects of stereoscopic slant estimation: an evaluation and extension of Howard and Kaneko's theory. (47/9350)

We investigated temporal aspects of stereoscopically perceived slant produced by the following transformations: horizontal scale, horizontal shear, vertical scale, vertical shear, divergence and rotation, between the half-images of a stereogram. Six subjects viewed large field stimuli (70 degrees diameter) both in the presence and in the absence of a visual reference. The presentation duration was: 0.1, 0.4, 1.6, 6.4 or 25.6 s. Without reference we found the following: rotation and divergence evoked considerable perceived slant in a number of subjects. This finding violates the recently published results of Howard and Kaneko. Slant evoked by vertical scale and shear was similar to slant evoked by horizontal scale and shear but was generally less. With reference we found the following: vertical scale and vertical shear did not evoke slant. Slant due to rotation and divergence was similar to slant due to horizontal scale and shear but was generally less. According to the theory of Howard and Kaneko, perceived slant depends on the difference between horizontal and vertical scale and shear disparities. We made their theory more explicit by translating their proposals into linear mathematical expressions that contain weighting factors that allow for both slant evoked by rotation or divergence, subject-dependent underestimation of slant and other related phenomena reported in the literature. Our data for all stimulus durations and for all subjects is explained by this 'unequal-weighting' extension of Howard and Kaneko's theory.  (+info)

Monocular occlusion cues alter the influence of terminator motion in the barber pole phenomenon. (48/9350)

The influence of monocular occlusion cues on the perceived direction of motion of barber pole patterns is examined. Unlike previous studies that have emphasized the importance of binocular disparity, we find that monocular cues strongly influence the perceived motion direction and can even override binocular depth cues. The difference in motion bias for occluders with and without disparity cues is relatively small. Additionally, although 'T-junctions' aligned with occluders are particularly important, they are not strictly necessary for creating a change in motion perception. Finally, the amount of motion bias differs for several stimulus configurations, suggesting that the extrinsic/intrinsic classification of terminators is not all-or-none.  (+info)